Department of Chemistry and the Institute for Computational and Engineering Sciences, University of Texas at Austin , Austin, Texas 78712, United States.
ACS Nano. 2018 Jan 23;12(1):844-851. doi: 10.1021/acsnano.7b08278. Epub 2018 Jan 2.
Even as a commercial cathode material, LiFePO remains of tremendous research interest for understanding Li intercalation dynamics. The partially lithiated material spontaneously separates into Li-poor and Li-rich phases at equilibrium. Phase segregation is a surprising property of LiFePO given its high measured rate capability. Previous theoretical studies, aiming to describe Li intercalation in LiFePO, include both atomic-scale density functional theory (DFT) calculations of static Li distributions and entire-particle-scale phase field models, based upon empirical parameters, studying the dynamics of the phase separation. Little effort has been made to bridge the gap between these two scales. In this work, DFT calculations are used to fit a cluster expansion for the basis of kinetic Monte Carlo calculations, which enables long time scale simulations with accurate atomic interactions. This atomistic model shows how the phases evolve in LiFePO without parameters from experiments. Our simulations reveal that an ordered LiFePO4 phase with alternating Li-rich and Li-poor planes along the ac direction forms between the LiFePO and FePO phases, which is consistent with recent X-ray diffraction experiments showing peaks associated with an intermediate-Li phase. The calculations also help to explain a recent puzzling experiment showing that LiFePO particles with high aspect ratios that are narrower along the [100] direction, perpendicular to the [010] Li diffusion channels, actually have better rate capabilities. Our calculations show that lateral surfaces parallel to the Li diffusion channels, as well as other preexisting sites that bind Li weakly, are important for phase nucleation and rapid cycling performance.
即使作为商业阴极材料,LiFePO 仍然因其对理解 Li 嵌入动力学的研究而备受关注。部分锂化的材料在平衡时自发地分离为贫锂和富锂相。相分离是 LiFePO 的一个令人惊讶的特性,因为它具有高的测量速率能力。以前的理论研究旨在描述 Li 在 LiFePO 中的嵌入,包括基于经验参数的原子尺度密度泛函理论 (DFT) 计算静态 Li 分布和全粒子尺度相场模型,研究相分离的动力学。在这两个尺度之间的差距上几乎没有努力进行弥合。在这项工作中,DFT 计算用于拟合动力学蒙特卡罗计算的基础上的簇展开,这使得能够进行具有准确原子相互作用的长时间尺度模拟。这个原子模型展示了 LiFePO 中相是如何演变的,而无需来自实验的参数。我们的模拟表明,在 LiFePO 和 FePO 相之间形成了具有交替的富 Li 和贫 Li 层的有序 LiFePO4 相,这与最近的 X 射线衍射实验一致,该实验显示了与中间 Li 相相关的峰。该计算还有助于解释最近一个令人困惑的实验,该实验表明,具有较高纵横比的 LiFePO 颗粒在垂直于 Li 扩散通道[010]的[100]方向上较窄,实际上具有更好的倍率性能。我们的计算表明,平行于 Li 扩散通道的横向表面以及其他结合 Li 较弱的预先存在的位置对于相成核和快速循环性能很重要。