Suppr超能文献

癌症中巨型标记染色体的隐藏基因组和转录组可塑性。

The Hidden Genomic and Transcriptomic Plasticity of Giant Marker Chromosomes in Cancer.

机构信息

Department of Biology, University of Bari Aldo Moro, 70125 Italy

Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche, Segrate, 20090 Italy.

出版信息

Genetics. 2018 Mar;208(3):951-961. doi: 10.1534/genetics.117.300552. Epub 2017 Dec 26.

Abstract

Genome amplification in the form of rings or giant rod-shaped marker chromosomes (RGMs) is a common genetic alteration in soft tissue tumors. The mitotic stability of these structures is often rescued by perfectly functioning analphoid neocentromeres, which therefore significantly contribute to cancer progression. Here, we disentangled the genomic architecture of many neocentromeres stabilizing marker chromosomes in well-differentiated liposarcoma and lung sarcomatoid carcinoma samples. In cells carrying heavily rearranged RGMs, these structures were assembled as patchworks of multiple short amplified sequences, disclosing an extremely high level of complexity and definitely ruling out the existence of regions prone to neocentromere seeding. Moreover, by studying two well-differentiated liposarcoma samples derived from the onset and the recurrence of the same tumor, we documented an expansion of the neocentromeric domain that occurred during tumor progression, which reflects a strong selective pressure acting toward the improvement of the neocentromeric functionality in cancer. In lung sarcomatoid carcinoma cells we documented, extensive "centromere sliding" phenomena giving rise to multiple, closely mapping neocentromeric epialleles on separate coexisting markers occur, likely due to the instability of neocentromeres arising in cancer cells. Finally, by investigating the transcriptional activity of neocentromeres, we came across a burst of chimeric transcripts, both by extremely complex genomic rearrangements, and /-splicing events. Post-transcriptional editing events have been reported to expand and variegate the genetic repertoire of higher eukaryotes, so they might have a determining role in cancer. The increased incidence of fusion transcripts, might act as a driving force for the genomic amplification process, together with the increased transcription of oncogenes.

摘要

环状或巨大棒状标记染色体(RGMs)形式的基因组扩增是软组织肿瘤中常见的遗传改变。这些结构的有丝分裂稳定性通常通过功能完善的无着丝粒亚中心拯救,因此它们对癌症进展有重大贡献。在这里,我们梳理了在分化良好的脂肪肉瘤和肺肉瘤样癌样本中稳定标记染色体的许多新中心体的基因组结构。在携带重排 RGM 的细胞中,这些结构作为多个短扩增序列的拼贴组装,揭示了极高的复杂性,并且肯定排除了存在易发生新中心体播种的区域。此外,通过研究两个来自同一肿瘤起始和复发的分化良好的脂肪肉瘤样本,我们记录了新中心体域在肿瘤进展过程中的扩张,这反映了在癌症中新中心体功能改善的强烈选择压力。在肺肉瘤样癌细胞中,我们记录了广泛的“着丝粒滑动”现象,导致多个紧密映射的新中心体等位基因出现在单独共存的标记上,这可能是由于癌细胞中新中心体的不稳定性所致。最后,通过研究新中心体的转录活性,我们遇到了大量的嵌合转录本,包括通过极其复杂的基因组重排和/或剪接事件。据报道,转录后编辑事件会扩展和多样化真核生物的遗传库,因此它们可能在癌症中起决定性作用。融合转录本的发生率增加,可能与癌基因的转录增加一起,作为基因组扩增过程的驱动力。

相似文献

1
The Hidden Genomic and Transcriptomic Plasticity of Giant Marker Chromosomes in Cancer.
Genetics. 2018 Mar;208(3):951-961. doi: 10.1534/genetics.117.300552. Epub 2017 Dec 26.
2
Variability of origin for the neocentromeric sequences in analphoid supernumerary marker chromosomes of well-differentiated liposarcomas.
Cancer Lett. 2009 Jan 18;273(2):323-30. doi: 10.1016/j.canlet.2008.08.025. Epub 2008 Sep 26.
4
Characterization of centromere alterations in liposarcomas.
Genes Chromosomes Cancer. 2000 Oct;29(2):117-29. doi: 10.1002/1098-2264(2000)9999:9999<::aid-gcc1014>3.0.co;2-q.
5
Ring chromosomes, breakpoint clusters, and neocentromeres in sarcomas.
Genes Chromosomes Cancer. 2015 Mar;54(3):156-67. doi: 10.1002/gcc.22228. Epub 2014 Nov 25.
9
The architecture and evolution of cancer neochromosomes.
Cancer Cell. 2014 Nov 10;26(5):653-67. doi: 10.1016/j.ccell.2014.09.010.
10
Neocentromeres: role in human disease, evolution, and centromere study.
Am J Hum Genet. 2002 Oct;71(4):695-714. doi: 10.1086/342730. Epub 2002 Aug 26.

引用本文的文献

5
Small ring has big potential: insights into extrachromosomal DNA in cancer.
Cancer Cell Int. 2021 Apr 26;21(1):236. doi: 10.1186/s12935-021-01936-6.
7
BL1391: an established cell line from a human malignant peripheral nerve sheath tumor with unique genomic features.
Hum Cell. 2021 Jan;34(1):238-245. doi: 10.1007/s13577-020-00418-7. Epub 2020 Aug 27.
8
Eight million years of maintained heterozygosity in chromosome homologs of cercopithecine monkeys.
Chromosoma. 2020 Mar;129(1):57-67. doi: 10.1007/s00412-020-00731-y. Epub 2020 Jan 10.
9
TP53 in bone and soft tissue sarcomas.
Pharmacol Ther. 2019 Oct;202:149-164. doi: 10.1016/j.pharmthera.2019.06.010. Epub 2019 Jul 2.
10
Extrachromosomal oncogene amplification in tumour pathogenesis and evolution.
Nat Rev Cancer. 2019 May;19(5):283-288. doi: 10.1038/s41568-019-0128-6.

本文引用的文献

2
Chromatin dynamics during the cell cycle at centromeres.
Nat Rev Genet. 2017 Mar;18(3):192-208. doi: 10.1038/nrg.2016.157. Epub 2017 Jan 31.
3
Active centromere and chromosome identification in fixed cell lines.
Mol Cytogenet. 2016 Mar 22;9:28. doi: 10.1186/s13039-016-0236-x. eCollection 2016.
4
Abundant and broad expression of transcription-induced chimeras and protein products in mammalian genomes.
Biochem Biophys Res Commun. 2016 Feb 12;470(3):759-765. doi: 10.1016/j.bbrc.2015.12.084. Epub 2015 Dec 21.
5
CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly.
J Cell Sci. 2015 Dec 15;128(24):4572-87. doi: 10.1242/jcs.180786. Epub 2015 Nov 2.
6
CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores.
J Cell Biol. 2015 Jul 6;210(1):11-22. doi: 10.1083/jcb.201412028. Epub 2015 Jun 29.
7
CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells.
Epigenetics Chromatin. 2015 Jan 13;8:2. doi: 10.1186/1756-8935-8-2. eCollection 2015.
9
The architecture and evolution of cancer neochromosomes.
Cancer Cell. 2014 Nov 10;26(5):653-67. doi: 10.1016/j.ccell.2014.09.010.
10
Gene amplification: mechanisms and involvement in cancer.
Biomol Concepts. 2013 Dec;4(6):567-82. doi: 10.1515/bmc-2013-0026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验