Suppr超能文献

将 FeO 纳米颗粒单独限制在空心碳球的大孔内以实现高性能锂离子电池的粉碎控制。

Pulverization Control by Confining FeO Nanoparticles Individually into Macropores of Hollow Carbon Spheres for High-Performance Li-Ion Batteries.

机构信息

State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology , Linggong Road 2#, Dalian 116024, China.

出版信息

ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2581-2590. doi: 10.1021/acsami.7b16530. Epub 2018 Jan 12.

Abstract

In this article, double carbon shell hollow spheres which provide macropores (mC) for ultrasmall FeO nanoparticle (10-20 nm) encapsulation individually were first prepared (FeO@mC). The well-constructed FeO@mC electrode materials offer the feasibility to study the volume change, aggregation, and pulverization process of the active FeO nanoparticles for Li-ion storage in a confined space. FeO@mC exhibits excellent electrochemical performances and delivers a high capacity of 645 mA h g at 2 A g after 1000 cycles. Even at 10 A g or after 1000 cycles at 2 A g, the porous carbon structure was well maintained and no obvious aggregation and pulverization of the FeO nanoparticles was observed, although the volume of the active FeO particles was expanded to 40-60 nm compared to that of the original particles (10-20 nm). This can be due to the in situ embedment of one FeO nanoparticle into one macropore individually. The uniform dispersion and confinement of the FeO nanoparticles in the macropores of the carbon shell could effectively accommodate severe volume variations upon cycling and prevent self-aggregation and spreading out from the carbon shell during the expansion process of the nanoscale FeO particles, leading to improved capacity retention. Our work confirms the effectiveness for pulverization control by confining FeO nanoparticles individually into macropores to improve its Li-ion storage properties, providing a novel strategy for the design of new-structured anode materials for Li-ion batteries.

摘要

本文首次制备了具有大孔(mC)的双碳壳空心球,可将超小的 FeO 纳米颗粒(10-20nm)单独封装(FeO@mC)。构建良好的 FeO@mC 电极材料为研究活性 FeO 纳米颗粒在受限空间中用于锂离子存储的体积变化、聚集和粉化过程提供了可行性。FeO@mC 表现出优异的电化学性能,在 2A g 下经过 1000 次循环后可提供 645 mA h g 的高容量。即使在 10A g 或在 2A g 下经过 1000 次循环后,多孔碳结构得到了很好的保持,并且没有观察到 FeO 纳米颗粒的明显聚集和粉化,尽管与原始颗粒(10-20nm)相比,活性 FeO 颗粒的体积膨胀到 40-60nm。这可能是由于一个 FeO 纳米颗粒被单独原位嵌入一个大孔中。FeO 纳米颗粒在碳壳大孔中的均匀分散和限制可以有效地适应循环过程中的剧烈体积变化,并防止纳米级 FeO 颗粒膨胀过程中从碳壳中自聚集和扩散,从而提高了容量保持率。我们的工作证实了通过将 FeO 纳米颗粒单独限制在大孔中来控制粉化的有效性,从而提高其锂离子存储性能,为设计新型锂离子电池的结构阳极材料提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验