Tsuchiya Takaho, Fujii Masashi, Matsuda Naoki, Kunida Katsuyuki, Uda Shinsuke, Kubota Hiroyuki, Konishi Katsumi, Kuroda Shinya
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Tokyo, Japan.
PLoS Comput Biol. 2017 Dec 27;13(12):e1005913. doi: 10.1371/journal.pcbi.1005913. eCollection 2017 Dec.
Cells decode information of signaling activation at a scale of tens of minutes by downstream gene expression with a scale of hours to days, leading to cell fate decisions such as cell differentiation. However, no system identification method with such different time scales exists. Here we used compressed sensing technology and developed a system identification method using data of different time scales by recovering signals of missing time points. We measured phosphorylation of ERK and CREB, immediate early gene expression products, and mRNAs of decoder genes for neurite elongation in PC12 cell differentiation and performed system identification, revealing the input-output relationships between signaling and gene expression with sensitivity such as graded or switch-like response and with time delay and gain, representing signal transfer efficiency. We predicted and validated the identified system using pharmacological perturbation. Thus, we provide a versatile method for system identification using data with different time scales.
细胞通过数小时至数天时间尺度的下游基因表达来解码数十分钟时间尺度的信号激活信息,从而导致诸如细胞分化等细胞命运决定。然而,不存在具有如此不同时间尺度的系统识别方法。在此,我们使用压缩传感技术,并通过恢复缺失时间点的信号,开发了一种利用不同时间尺度数据的系统识别方法。我们在PC12细胞分化过程中测量了细胞外信号调节激酶(ERK)和环磷腺苷反应元件结合蛋白(CREB)的磷酸化、即早基因表达产物以及神经突伸长的解码基因的信使核糖核酸(mRNA),并进行了系统识别,揭示了信号传导与基因表达之间的输入-输出关系,其具有如分级或开关样反应等敏感性,以及时间延迟和增益,代表信号传递效率。我们使用药理学扰动预测并验证了所识别的系统。因此,我们提供了一种利用不同时间尺度数据进行系统识别的通用方法。