Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China.
ChemSusChem. 2018 Feb 22;11(4):666-671. doi: 10.1002/cssc.201702316. Epub 2018 Jan 29.
Inhibiting the recombination of electron and holes plays an essential role in photocatalytic process, particularly for metal-organic frameworks (MOFs), which had long been anticipated as high-efficient photocatalysts. Herein, we introduce a new strategy to make efficient separation of electrons and holes for the MOF-based photocatalyst, UiO-66-NH . At first, encapsulation of Pt nanoparticles (NPs) into UiO-66-NH (Pt@U6N) to shorten the electrons transport distance inside of MOF crystals, then using graphene oxide to wrap the external surface of Pt@U6N to facilitate the electrons transfer on the surface. The designed structure was found to possess superior H -generation ability compared to only inside or outside decorated samples, highlighting that the enhanced property strongly correlates with the inhibited recombination of electrons and holes by the inside/outside modification strategy. These findings suggest a synergistic effect of Pt NPs and graphene oxide on UiO-66-NH and reveal a new modification strategy to enhance the catalytic activity of the photocatalysts.
抑制电子和空穴的复合在光催化过程中起着至关重要的作用,特别是对于金属-有机骨架(MOFs),它们长期以来一直被认为是高效的光催化剂。在此,我们引入了一种新策略,使基于 MOF 的光催化剂 UiO-66-NH 能够有效地实现电子和空穴的分离。首先,将 Pt 纳米颗粒(NPs)封装到 UiO-66-NH(Pt@U6N)中,以缩短 MOF 晶体内部的电子传输距离,然后使用氧化石墨烯包裹 Pt@U6N 的外表面,以促进表面上的电子转移。与仅进行内部或外部修饰的样品相比,所设计的结构表现出优异的 H 2 生成能力,这表明增强性能与通过内部/外部修饰策略抑制电子和空穴复合密切相关。这些发现表明 Pt NPs 和氧化石墨烯对 UiO-66-NH 具有协同作用,并揭示了一种新的修饰策略,以提高光催化剂的催化活性。