Suppr超能文献

臭名昭著但却难以理解:液-气界面张力如何引发蛋白质聚集。

Notorious but not understood: How liquid-air interfacial stress triggers protein aggregation.

机构信息

Ludwig-Maximilians-Universität Munich, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, 81377 Munich, Germany.

AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen am Rhein, Germany.

出版信息

Int J Pharm. 2018 Feb 15;537(1-2):202-212. doi: 10.1016/j.ijpharm.2017.12.043. Epub 2017 Dec 26.

Abstract

Protein aggregation is a major challenge in the development of biopharmaceuticals. As the pathways of aggregation are manifold, good understanding of the mechanisms behind is essential. Particularly, the presence of liquid-air interfaces has been identified to trigger the formation of large protein particles. Investigations of two monoclonal antibodies (IgGs) at the liquid-air interface exhibited the formation of a highly compressible film. An inhomogeneous protein distribution across the interface with areas of increased packing density was discovered by Brewster-Angle microscopy. Repeated compression and decompression of the film resulted in a considerable hysteresis and in significantly elevated numbers of particles. Furthermore, the extent and speed of compression directly affected the mechanical properties of the film as well as the number of particles formed. Infrared reflection-absorption spectroscopy did not indicate considerable changes in secondary structure compared to FT-IR spectra in solution. Hence, the IgG remains in a native-like conformation at the interface. Consequently, the physical-chemical methods applied in combination with the newly-designed Mini-trough provided substantial new knowledge of the mechanisms of interface-related protein aggregation and enable testing of different formulations under controlled stress conditions. Pure compression and decompression with a Mini-Trough allows a much more controlled stressing than shaking.

摘要

蛋白质聚集是生物制药发展的主要挑战。由于聚集的途径多种多样,因此必须很好地了解其背后的机制。特别是,已经确定存在气液界面会触发大蛋白质颗粒的形成。在气液界面处对两种单克隆抗体(IgG)的研究表明形成了高可压缩性的膜。Brewster 角显微镜发现,界面上的蛋白质分布不均匀,存在着增加的包装密度区域。对膜进行反复的压缩和解压会导致相当大的滞后,并显著增加颗粒数量。此外,压缩的程度和速度直接影响膜的机械性能以及形成的颗粒数量。与溶液中的傅里叶变换红外(FT-IR)光谱相比,红外反射吸收光谱并没有表明二级结构有相当大的变化。因此,IgG 在界面处仍保持类似天然的构象。因此,应用的物理化学方法与新设计的 Mini-trough 相结合,为界面相关蛋白质聚集的机制提供了大量新的知识,并能够在受控的应力条件下测试不同的配方。使用 Mini-trough 进行纯压缩和解压比摇晃更能进行更严格的控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验