Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda #340, Santiago 8331150, Chile.
Neuroscience. 2018 Feb 10;371:433-444. doi: 10.1016/j.neuroscience.2017.12.032. Epub 2017 Dec 29.
The communication between sensory systems and the specific brain centers that process this information is crucial to develop adequate behavioral responses. Modulatory systems, including dopaminergic circuits, regulate this communication to finely tune the behavioral response associated to any given stimulus. For instance, the Mushroom Body (MB), an insect brain integration center that receives and processes several sensory stimuli and organizes the execution of motor programs, communicates with MB output neurons (MBONs) to develop behavioral responses associated to olfactory stimuli. This communication is modulated by dopaminergic neural systems. Here we show that silencing dopaminergic neurons increases the aversive response observed in adult flies exposed to Benzaldehyde (Bz) or octanol. We studied the contribution of two dopaminergic clusters that innervate different zones of MB, Protocerebral anterior medial (PAM) and Protocerebral posterior lateral 1 (PPL1), on the innate value to the aversive stimulus and the associated locomotor behavior. In order to do this, we manipulated the synaptic transmission of these neural clusters through the expression of Tetanus toxin, Kir2.1 and Transient receptor potential cation channel A1 (TrpA1) channels. Our results show that neurons in PPL1 and PAM differentially modulate the innate value to Bz in adult flies. On the other hand, blocking neurotransmission or genetic silencing of PAM neurons results in decreased locomotor behavior in flies, an effect not observed when silencing PPL1. Our results suggest that as in mammals, specific dopaminergic pathways differentially modulate locomotor behavior and the innate value for an odorant, a limbic-like response in Drosophila.
感觉系统与处理这些信息的特定大脑中枢之间的通讯对于发展适当的行为反应至关重要。调节系统,包括多巴胺能回路,调节这种通讯,以精细地调整与任何给定刺激相关的行为反应。例如,蘑菇体(MB),一种接收和处理多种感觉刺激并组织运动程序执行的昆虫大脑整合中心,与 MB 输出神经元(MBON)通讯,以发展与嗅觉刺激相关的行为反应。这种通讯受多巴胺能神经系统的调节。在这里,我们表明,沉默多巴胺能神经元会增加成年果蝇暴露于苯甲醛(Bz)或辛醇时观察到的厌恶反应。我们研究了支配 MB 不同区域的两个多巴胺能簇——原脑前内侧(PAM)和原脑后外侧 1(PPL1)对先天厌恶刺激和相关运动行为的贡献。为了做到这一点,我们通过表达破伤风毒素、Kir2.1 和瞬时受体电位阳离子通道 A1(TrpA1)通道来操纵这些神经簇的突触传递。我们的结果表明,PPL1 和 PAM 中的神经元差异调节成年果蝇对 Bz 的先天价值。另一方面,阻断 PAM 神经元的神经传递或基因沉默会导致果蝇的运动行为减少,而沉默 PPL1 时则不会观察到这种影响。我们的结果表明,与哺乳动物一样,特定的多巴胺能通路差异调节运动行为和对气味的先天价值,这是果蝇中类似边缘的反应。