Suppr超能文献

生长猪生产性能和体温调节对父本系及其生产环境(温带与热带)相互作用的反应。

Interactions between sire family and production environment (temperate vs. tropical) on performance and thermoregulation responses in growing pigs.

出版信息

J Anim Sci. 2017 Nov;95(11):4738-4751. doi: 10.2527/jas2017.1611.

Abstract

The aim of this study was to evaluate the effect of 2 climatic environments (temperate [TEMP] vs. tropical humid [TROP]) on production and thermoregulation traits in growing pigs. A backcross design involving Large White (LW; heat sensitive) and Creole (CR; heat tolerant) pigs was studied. The same 10 F LW × CR boars were mated with related LW sows in each environment. A total of 1,298 backcross pigs ( = 634 pigs from 11 batches for the TEMP environment and = 664 pigs from 12 batches for the TROP environment) were phenotyped on BW (every 15 d from wk 11 to 23 of age), voluntary feed intake (ADFI, from wk 11 to 23), backfat thickness (BFT; at wk 19 and 23), skin temperature (ST; at wk 19 and 23), and rectal temperature (RT; at wk 19, 21, and 23). The feed conversion ratio was computed for the whole test period (11 to 23 wk). The calculation of the temperature-humidity index showed an average difference of 2.4°C between the TEMP and TROP environments. The ADG and ADFI were higher in the TEMP environment than in the TROP environment (834 vs. 754 g/d and 2.20 vs. 1.80 kg/d, respectively; < 0.001). Body temperatures were higher in the TROP environment than in the TEMP environment (35.9 vs. 34.8°C for ST and 39.5 vs. 39.3°C for RT, respectively; < 0.001). Most of the studied traits (i.e., BW, BFT, ADG, ADFI, and RT) were affected by sire family × environment interactions ( < 0.05), resulting in "robust" and "sensitive" families. Our results show a family dependency in the relationships between heat resistance and robustness, suggesting the possibility of finding genotypes with high production and low heat sensitivity. Further research is needed to confirm the genetic × environment interaction and to detect QTL related to heat tolerance.

摘要

本研究旨在评估两种气候环境(温带[TEMP]与热带湿润[TROP])对生长猪生产性能和体温调节特性的影响。研究采用大白猪(LW;热敏)和克里奥尔猪(CR;耐热)回交设计。在每个环境中,用 10 头 F1 LW×CR 公猪与相关的 LW 母猪配种。共对 1298 头回交猪(=TEMP 环境下 11 批中的 634 头猪,=TROP 环境下 12 批中的 664 头猪)进行了体重(11 至 23 周龄每隔 15 天)、自由采食量(ADFI,11 至 23 周龄)、背膘厚(BFT;19 和 23 周龄)、皮肤温度(ST;19 和 23 周龄)和直肠温度(RT;19、21 和 23 周龄)的表型测定。整个试验期(11 至 23 周)计算饲料转化率。计算温度-湿度指数显示 TEMP 和 TROP 环境之间的平均差异为 2.4°C。TEMP 环境下的 ADG 和 ADFI 高于 TROP 环境(834 比 754 g/d 和 2.20 比 1.80 kg/d,均<0.001)。TROP 环境下的体温高于 TEMP 环境(ST 为 35.9 比 34.8°C,RT 为 39.5 比 39.3°C,均<0.001)。大多数研究性状(即体重、背膘厚、ADG、ADFI 和 RT)受到 sire family×environment interaction 的影响(<0.05),导致“健壮”和“敏感”家系。我们的结果表明,耐热性与健壮性之间存在家族依赖性,这表明有可能找到生产性能高且耐热性低的基因型。需要进一步研究以确认遗传与环境的相互作用,并检测与耐热性相关的 QTL。

相似文献

5
Selection for residual feed intake in growing pigs: effects on sow performance in a tropical climate.
J Anim Sci. 2014 Aug;92(8):3568-79. doi: 10.2527/jas.2014-7711. Epub 2014 Jul 1.
6
Acclimation to high ambient temperature in Large White and Caribbean Creole growing pigs.
J Anim Sci. 2007 Mar;85(3):779-90. doi: 10.2527/jas.2006-430. Epub 2006 Nov 3.
7
Effects of breed and season on performance of lactating sows in a tropical humid climate.
J Anim Sci. 2006 Feb;84(2):360-9. doi: 10.2527/2006.842360x.
10
1HNMR-Based metabolomic profiling method to develop plasma biomarkers for sensitivity to chronic heat stress in growing pigs.
PLoS One. 2017 Nov 27;12(11):e0188469. doi: 10.1371/journal.pone.0188469. eCollection 2017.

引用本文的文献

3
The Genetics of Thermoregulation in Pigs: A Review.
Front Vet Sci. 2021 Dec 13;8:770480. doi: 10.3389/fvets.2021.770480. eCollection 2021.
10
Use of geographic information system tools to predict animal breed suitability for different agro-ecological zones.
Animal. 2019 Jul;13(7):1536-1543. doi: 10.1017/S1751731118003002. Epub 2018 Nov 13.

本文引用的文献

1
BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.
J Anim Sci. 2017 Apr;95(4):1780-1787. doi: 10.2527/jas.2016.0953.
2
Genetic parameters for thermoregulation and production traits in lactating sows reared in tropical climate.
Animal. 2017 Mar;11(3):365-374. doi: 10.1017/S175173111600135X. Epub 2016 Jul 5.
3
Genotype by environment interaction and breeding for robustness in livestock.
Front Genet. 2015 Oct 20;6:310. doi: 10.3389/fgene.2015.00310. eCollection 2015.
4
Robustness to chronic heat stress in laying hens: a meta-analysis.
Poult Sci. 2015 Apr;94(4):586-600. doi: 10.3382/ps/pev028. Epub 2015 Feb 25.
5
Effect of daily environmental temperature on farrowing rate and total born in dam line sows.
J Anim Sci. 2013 Jun;91(6):2667-79. doi: 10.2527/jas.2012-5902. Epub 2013 Mar 12.
7
Phenotypic plasticity of composite beef cattle performance using reaction norms model with unknown covariate.
Animal. 2013 Feb;7(2):202-10. doi: 10.1017/S1751731112001711. Epub 2012 Sep 27.
8
Adaptation to hot climate and strategies to alleviate heat stress in livestock production.
Animal. 2012 May;6(5):707-28. doi: 10.1017/S1751731111002448.
9
Effect of temperature level on thermal acclimation in Large White growing pigs.
Animal. 2008 Nov;2(11):1619-26. doi: 10.1017/S1751731108002814.
10
Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction.
J Anim Sci. 2012 Jul;90(7):2130-41. doi: 10.2527/jas.2011-4333. Epub 2012 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验