Suppr超能文献

评估来自多个来源的自由文本临床文档中职业信息的呈现情况。

Assessing the Representation of Occupation Information in Free-Text Clinical Documents Across Multiple Sources.

作者信息

Lindemann Elizabeth A, Chen Elizabeth S, Rajamani Sripriya, Manohar Nivedha, Wang Yan, Melton Genevieve B

机构信息

Department of Surgery, University of Minnesota, Minneapolis, MN, USA.

Center for Biomedical Informatics, Brown University, Providence, RI, USA.

出版信息

Stud Health Technol Inform. 2017;245:486-490.

Abstract

There has been increasing recognition of the key role of social determinants like occupation on health. Given the relatively poor understanding of occupation information in electronic health records (EHRs), we sought to characterize occupation information within free-text clinical document sources. From six distinct clinical sources, 868 total occupation-related sentences were identified for the study corpus. Building off approaches from previous studies, refined annotation guidelines were created using the National Institute for Occupational Safety and Health Occupational Data for Health data model with elements added to increase granularity. Our corpus generated 2,005 total annotations representing 39 of 41 entity types from the enhanced data model. Highest frequency entities were: Occupation Description (17.7%); Employment Status - Not Specified (12.5%); Employer Name (11.0%); Subject (9.8%); Industry Description (6.2%). Our findings support the value of standardizing entry of EHR occupation information to improve data quality for improved patient care and secondary uses of this information.

摘要

人们越来越认识到诸如职业等社会决定因素对健康的关键作用。鉴于电子健康记录(EHR)中对职业信息的了解相对较少,我们试图对自由文本临床文档来源中的职业信息进行特征描述。从六个不同的临床来源中,为研究语料库识别出了总共868个与职业相关的句子。在先前研究方法的基础上,使用美国国家职业安全与健康研究所的健康职业数据模型创建了完善的注释指南,并添加了一些元素以提高粒度。我们的语料库总共生成了2005个注释,代表了增强数据模型中41种实体类型中的39种。出现频率最高的实体是:职业描述(17.7%);就业状况 - 未指定(12.5%);雇主名称(11.0%);主体(9.8%);行业描述(6.2%)。我们的研究结果支持对EHR职业信息的录入进行标准化,以提高数据质量,从而改善患者护理以及该信息的二次利用。

相似文献

4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验