Suppr超能文献

评估电子健康记录集成交接记录中医疗服务提供者生成的自由文本质量。

Assessing Provider-Generated Free-Text Quality in EHR-Integrated Handoff Notes.

作者信息

Arsoniadis Elliot G, Skube Steven J, Bjerke Treva M, Jarabek Bryan, Melton Genevieve B

机构信息

Department of Surgery, University of Minnesota, Minneapolis, MN, USA.

Fairview Health Services, Minneapolis, MN, USA.

出版信息

Stud Health Technol Inform. 2017;245:999-1003.

Abstract

Handoff notes are increasingly integrated within electronic health record (EHR) systems and often contain data automatically generated from the EHR and free-text narratives. We examined the quality of data entered by providers in the free-text portion of our institutional EHR handoff tool. Overall, 65% of handoff notes contained at least one error (average 1.7 errors per note). Most errors were omissions in information around patient plan/management or assessment/diagnosis rather than entry of false data. Factors associated with increased error rate were increasing hospital day number; weekend note; medical (vs. surgical) service team; and authorship by a medical student, first or fourth year resident physician, or attending physician. Our findings suggest that errors are common in handoff notes, and while these errors are not completely false data, they may provide individuals caring for patients an inaccurate understanding of patient status.

摘要

交接班记录越来越多地整合到电子健康记录(EHR)系统中,并且通常包含从EHR自动生成的数据和自由文本叙述。我们检查了我们机构EHR交接班工具自由文本部分中提供者输入的数据质量。总体而言,65%的交接班记录至少包含一个错误(平均每条记录1.7个错误)。大多数错误是患者计划/管理或评估/诊断方面的信息遗漏,而不是错误数据的录入。与错误率增加相关的因素包括住院天数增加、周末记录、医疗(而非外科)服务团队,以及由医学生、第一年或第四年住院医师或主治医师撰写。我们的研究结果表明,交接班记录中的错误很常见,虽然这些错误并非完全是错误数据,但它们可能会让照顾患者的人员对患者状况产生不准确的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验