Dept. of Chemistry School of Advanced Sciences, VIT, Vellore, Tamil Nadu 632014, India.
The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA.
Biochim Biophys Acta Biomembr. 2018 May;1860(5):1069-1076. doi: 10.1016/j.bbamem.2018.01.001. Epub 2018 Jan 3.
HET-C2 is a fungal glycolipid transfer protein (GLTP) that uses an evolutionarily-modified GLTP-fold to achieve more focused transfer specificity for simple neutral glycosphingolipids than mammalian GLTPs. Only one of HET-C2's two Trp residues is topologically identical to the three Trp residues of mammalian GLTP. Here, we provide the first assessment of the functional roles of HET-C2 Trp residues in glycolipid binding and membrane interaction. Point mutants HET-C2, HET-C2 and HET-C2 all retained >90% activity and 80-90% intrinsic Trp fluorescence intensity; whereas HET-C2 transfer activity decreased to 55% but displayed ~120% intrinsic Trp emission intensity. Thus, neither W208 nor F149 is absolutely essential for activity and most Trp emission intensity (85-90%) originates from Trp109. This conclusion was supported by HET-C2 which displayed 8% intrinsic Trp intensity and was nearly inactive. Incubation of the HET-C2 mutants with 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles containing different monoglycosylceramides or presented by lipid ethanol-injection decreased Trp fluorescence intensity and blue-shifted the Trp λ by differing amounts compared to wtHET-C2. With HET-C2 mutants for Trp208, the emission intensity decreases (30-40%) and λ blue-shifts (~12nm) were more dramatic than for wtHET-C2 or F149 mutants and closely resembled human GLTP. When Trp109 was mutated, the glycolipid induced changes in HET-C2 emission intensity and λ blue-shift were nearly nonexistent. Our findings indicate that the HET-C2 Trp λ blue-shift is diagnostic for glycolipid binding; whereas the emission intensity decrease reflects higher environmental polarity encountered upon nonspecific interaction with phosphocholine headgroups comprising the membrane interface and specific interaction with the hydrated glycolipid sugar.
HET-C2 是一种真菌糖脂转移蛋白(GLTP),它使用经过进化修饰的 GLTP 折叠结构,实现了对简单中性糖脂的更具针对性的转移特异性,而哺乳动物 GLTP 则没有这种特异性。HET-C2 只有两个色氨酸残基中的一个在拓扑结构上与哺乳动物 GLTP 的三个色氨酸残基相同。在这里,我们首次评估了 HET-C2 色氨酸残基在糖脂结合和膜相互作用中的功能作用。定点突变体 HET-C2、HET-C2 和 HET-C2 均保留了 >90%的活性和 80-90%的内在色氨酸荧光强度;而 HET-C2 的转移活性降低至 55%,但显示出 ~120%的内在色氨酸发射强度。因此,W208 和 F149 都不是活性所必需的,并且大部分色氨酸发射强度(85-90%)来自于 Trp109。这一结论得到了 HET-C2 的支持,其显示出 8%的内在色氨酸强度且几乎没有活性。将 HET-C2 突变体与含有不同单糖神经酰胺的 1-棕榈酰-2-油酰基-磷酸胆碱囊泡孵育,或通过脂质乙醇注入呈现,与 wtHET-C2 相比,不同程度地降低了色氨酸荧光强度,并使色氨酸 λ 蓝移。对于 HET-C2 的 Trp208 突变体,发射强度降低(30-40%)和 λ 蓝移(~12nm)比 wtHET-C2 或 F149 突变体更为显著,并且与人类 GLTP 非常相似。当 Trp109 发生突变时,糖脂诱导的 HET-C2 发射强度变化和 λ 蓝移几乎不存在。我们的发现表明,HET-C2 的色氨酸 λ 蓝移是糖脂结合的诊断指标;而发射强度的降低反映了与构成膜界面的磷酸胆碱头部基团的非特异性相互作用以及与水合糖脂糖的特异性相互作用时遇到的更高环境极性。