Wuxi Center for Disease Control and Prevention, Wuxi 214023, P. R. China.
Nanoscale. 2018 Jan 25;10(4):1631-1640. doi: 10.1039/c7nr08434j.
The aggregation-induced emission (AIE) behavior of metal nanoclusters has attracted much attention owing to their extensive application prospects in bio-imaging and chemical sensors. However, the intrinsic mechanism of metal nanoclusters' aggregation-induced emission is still not very clear. Herein, Cu nanoclusters S1 and Ag(i)-doped Cu/Ag nanoclusters S2 and S3 coated with d-penicillamine are designed and synthesized by a self-assembly strategy. S1-S3 show strong luminescence properties with luminescence quantum yields as high as 11.4%-14.2%. Moreover, their luminescence peak position shows an obvious hypsochromic shift from 615 (S1) to 570 nm (S3). With the introduction of Ag(i) ions, the assembly morphology also shows clear changes from the irregular assembly structure (S1) to large spherical particles with the average size of 0.18 μm for S2 and 0.47 μm for S3. A detailed investigation of high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD) patterns, ESI-TOF-mass spectra, UV-vis absorption spectra, photoluminescence spectra and luminescence lifetimes of Cu/Ag nanoclusters S2 and S3 indicates that Cu/Ag nanoclusters are actually a Cu/Ag alloy nanocluster superstructure and the microscopic arrangement of S2 and S3 is more compact and ordered relative to S1. The more compact and ordered Cu/Ag alloy nanocluster superstructure enhances the metal-metal interaction of inter-nanoclusters and intra-nanoclusters and facilitates the radiative transition of ligand-to-metal charge transfer (LMCT) and/or ligand-to-metal-metal charge transfer (LMMCT), which results in the aggregation-induced emission phenomenon. In addition, an enhanced metal-metal interaction increases the average metal-metal distance of the Cu/Ag nanocluster superstructure, leading to a hypsochromic shift of emission spectra. Furthermore, the Cu/Ag alloy nanoclusters show good stability and reversibility on pH cycling between pH = 3 and 7 and temperature cycling between 5 °C and 48 °C. The Cu/Ag alloy nanoclusters can be used as probes for Ag(i) ion and halide anion detection in real water samples by the ratiometric PL method (I/I).
金属纳米团簇的聚集诱导发光(AIE)行为因其在生物成像和化学传感器中的广泛应用前景而引起了广泛关注。然而,金属纳米团簇聚集诱导发光的内在机制尚不清楚。在此,通过自组装策略设计并合成了巯基丙酸(d-penicillamine)包覆的 Cu 纳米团簇 S1 以及 Ag(i)掺杂的 Cu/Ag 纳米团簇 S2 和 S3。S1-S3 表现出很强的发光性能,发光量子产率高达 11.4%-14.2%。此外,它们的发光峰位置从 615nm(S1)明显蓝移到 570nm(S3)。引入 Ag(i)离子后,组装形貌也从不规则的组装结构(S1)明显转变为大的球形颗粒,其中 S2 的平均粒径为 0.18μm,S3 的平均粒径为 0.47μm。高分辨率透射电子显微镜(HRTEM)图像、X 射线衍射(XRD)图谱、电喷雾飞行时间质谱(ESI-TOF-MS)、紫外-可见吸收光谱、光致发光光谱和 Cu/Ag 纳米团簇 S2 和 S3 的荧光寿命的详细研究表明,Cu/Ag 纳米团簇实际上是一种 Cu/Ag 合金纳米团簇超结构,并且 S2 和 S3 的微观排列相对于 S1 更加紧凑和有序。更紧凑和有序的 Cu/Ag 合金纳米团簇超结构增强了纳米团簇间和纳米团簇内的金属-金属相互作用,促进了配体到金属电荷转移(LMCT)和/或配体到金属-金属电荷转移(LMMCT)的辐射跃迁,从而导致聚集诱导发光现象。此外,金属-金属相互作用的增强增加了 Cu/Ag 纳米团簇超结构的平均金属-金属距离,导致发射光谱的蓝移。此外,Cu/Ag 合金纳米团簇在 pH 值在 3 到 7 之间以及温度在 5°C 到 48°C 之间循环时表现出良好的稳定性和可逆性。通过比率型 PL 方法(I/I),Cu/Ag 合金纳米团簇可用作实际水样中 Ag(i)离子和卤化物阴离子检测的探针。