Wang Yuhan, Zhou Fu-Ming
Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States.
Front Pharmacol. 2017 Dec 21;8:935. doi: 10.3389/fphar.2017.00935. eCollection 2017.
Dopamine (DA) is required for motor function in vertebrate animals including humans. The striatum, a key motor control center, receives a dense DA innervation and express high levels of DA D1 receptors (D1Rs) and D2 receptors (D2Rs). Other brain areas involved in motor function such as the globus pallidus external segment (GPe) and the substantia nigra pars reticulata (SNr) and the motor cortex (MC) also receive DA innervation and express DA receptors. Thus, the relative contribution of the striatal and extrastriatal DA systems to the motor function has been an important question critical for understanding the functional operation of the motor control circuits and also for therapeutic targeting. We have now experimentally addressed this question in the transcription factor Pitx3 null mutant (Pitx3Null) mice that have an autogenic and parkinsonian-like striatal DA denervation and hence supersensitive motor response to DA stimulation. Using DA agonist unilateral microinjection-induced rotation as a reliable readout of motor stimulation, our results show that L-dopa microinjection into the dorsal striatum (DS) induced 5-10 times more rotations than that induced by L-dopa microinjection into GPe and SNr, while L-dopa microinjection into the primary MC induced the least number of rotations. Furthermore, our results show that separate microinjection of the D1R-like agonist SKF81297 and the D2R-like agonist ropinirole into the DS each induced only modest numbers of rotation, whereas concurrent injection of the two agonists triggered more rotations than the sum of the rotations induced by each of these two agonists separately, indicating D1R-D2R synergy. These results suggest that the striatum, not GPe, SNr or MC, is the primary site for D1Rs and D2Rs to synergistically stimulate motor function in L-dopa treatment of Parkinson's disease (PD). Our results also predict that non-selective, broad spectrum DA agonists activating both D1Rs and D2Rs are more efficacious anti-PD drugs than the current D2R agonists.
多巴胺(DA)对于包括人类在内的脊椎动物的运动功能至关重要。纹状体作为关键的运动控制中心,接受密集的多巴胺能神经支配,并表达高水平的多巴胺D1受体(D1Rs)和D2受体(D2Rs)。其他参与运动功能的脑区,如苍白球外侧部(GPe)、黑质网状部(SNr)和运动皮层(MC),也接受多巴胺能神经支配并表达多巴胺受体。因此,纹状体和纹状体以外的多巴胺系统对运动功能的相对贡献,一直是一个重要问题,对于理解运动控制回路的功能运作以及治疗靶点都至关重要。我们现在通过实验研究了转录因子Pitx3基因敲除突变体(Pitx3Null)小鼠中的这个问题,这些小鼠具有自发性和帕金森样的纹状体多巴胺能去神经支配,因此对多巴胺刺激具有超敏运动反应。使用多巴胺激动剂单侧微量注射诱导的旋转作为运动刺激的可靠指标,我们的结果表明,向背侧纹状体(DS)微量注射左旋多巴所诱导的旋转次数比向GPe和SNr微量注射左旋多巴所诱导的旋转次数多5 - 10倍,而向初级运动皮层(MC)微量注射左旋多巴所诱导的旋转次数最少。此外,我们的结果表明,分别向DS微量注射D1R样激动剂SKF81297和D2R样激动剂罗匹尼罗,各自仅诱导适度数量的旋转,而同时注射这两种激动剂引发的旋转次数比这两种激动剂分别单独诱导的旋转次数之和更多,表明D1R - D2R协同作用。这些结果表明,在帕金森病(PD)的左旋多巴治疗中,纹状体而非GPe、SNr或MC是D1Rs和D2Rs协同刺激运动功能的主要部位。我们的结果还预测,激活D1Rs和D2Rs的非选择性、广谱多巴胺激动剂比目前的D2R激动剂是更有效的抗PD药物。