Suppr超能文献

实时检测和研究单个活细胞中全基因组突变的方法。

Method for Detecting and Studying Genome-Wide Mutations in Single Living Cells in Real Time.

作者信息

Elez Marina, Robert Lydia, Matic Ivan

机构信息

iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 91000, Évry, France., Evry, France.

LJP, CNRS UMR 8237, UPMC, Sorbonne Universités, Paris, France, Paris, France.

出版信息

Methods Mol Biol. 2018;1736:29-39. doi: 10.1007/978-1-4939-7638-6_3.

Abstract

DNA sequencing and fluctuation test have been choice methods for studying DNA mutations for decades. Although invaluable tools allowing many important discoveries on mutations, they are both highly influenced by fitness effects of mutations, and therefore suffer several limits. Fluctuation test is for example limited to mutations that produce an identifiable phenotype, which is the minority of all generated mutations. Genome-wide extrapolations using this method are therefore difficult. DNA sequencing detects almost all DNA mutations in population of cells. However, the obtained population mutation spectrum is biased because of the fitness effects of newly generated mutations. For example, mutations that affect fitness strongly and negatively are underrepresented, while those with a strong positive effect are overrepresented. Single-cell genome sequencing can solve this problem. However, sufficient amount of DNA for this approach is obtained by massive whole-genome amplification, which produces many artifacts.We describe the first direct method for monitoring genome-wide mutations in living cells independently of their effect on fitness. This method is based on the following three facts. First, DNA replication errors are the major source of DNA mutations. Second, these errors are the target for an evolutionarily conserved mismatch repair (MMR) system, which repairs the vast majority of replication errors. Third, we recently showed that the fluorescently labeled MMR protein MutL forms fluorescent foci on unrepaired replication errors. If not repaired, the new round of DNA synthesis fixes these errors in the genome permanently, i.e., they become mutations. Therefore, visualizing foci of the fluorescently tagged MutL in individual living cells allows detecting mutations as they appear, before the expression of the phenotype.

摘要

几十年来,DNA测序和波动测试一直是研究DNA突变的首选方法。尽管它们是非常宝贵的工具,带来了许多关于突变的重要发现,但它们都受到突变适应性效应的高度影响,因此存在一些局限性。例如,波动测试仅限于产生可识别表型的突变,而这只是所有产生的突变中的少数。因此,使用这种方法进行全基因组推断很困难。DNA测序可以检测细胞群体中几乎所有的DNA突变。然而,由于新产生突变的适应性效应,所获得的群体突变谱存在偏差。例如,对适应性有强烈负面影响的突变代表性不足,而具有强烈正面影响的突变则代表性过高。单细胞基因组测序可以解决这个问题。然而,这种方法所需的足够量的DNA是通过大规模全基因组扩增获得的,这会产生许多假象。我们描述了第一种直接监测活细胞全基因组突变的方法,该方法独立于突变对适应性的影响。此方法基于以下三个事实。第一,DNA复制错误是DNA突变的主要来源。第二,这些错误是进化上保守的错配修复(MMR)系统的作用靶点,该系统能修复绝大多数复制错误。第三,我们最近发现,荧光标记的MMR蛋白MutL会在未修复的复制错误上形成荧光焦点。如果不被修复,新一轮的DNA合成会将这些错误永久性地固定在基因组中,即它们会变成突变。因此,在单个活细胞中观察荧光标记的MutL的焦点,能够在表型表达之前检测到突变的出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验