Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria.
Philos Trans R Soc Lond B Biol Sci. 2018 Mar 5;373(1741). doi: 10.1098/rstb.2016.0440.
Telomeres, the non-coding ends of linear chromosomes, are thought to be an important mechanism of individual variability in performance. Research suggests that longer telomeres are indicative of better health and increased fitness; however, many of these data are correlational and whether these effects are causal are poorly understood. Experimental tests are emerging in medical and laboratory-based studies, but these types of experiments are rare in natural populations, which precludes conclusions at an evolutionary level. At the crossroads between telomere length and fitness is telomerase, an enzyme that can lengthen telomeres. Experimental modulation of telomerase activity is a powerful tool to manipulate telomere length, and to look at the covariation of telomerase, telomeres and individual life-history traits. Here, we review studies that manipulate telomerase activity in laboratory conditions and emphasize the associated physiological and fitness consequences. We then discuss how telomerase's impact on ageing may go beyond telomere maintenance. Based on this overview, we then propose several research avenues for future studies to explore how individual variability in health, reproduction and survival may have coevolved with different patterns of telomerase activity and expression. Such knowledge is of prime importance to fully understand the role that telomere dynamics play in the evolution of animal ageing.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
端粒是线性染色体的非编码末端,被认为是个体表现变异性的一个重要机制。研究表明,较长的端粒表明更好的健康和更高的适应性;然而,这些数据大多是相关的,这些影响是否具有因果关系还知之甚少。在医学和基于实验室的研究中出现了实验测试,但这些类型的实验在自然种群中很少见,这使得在进化水平上无法得出结论。在端粒长度和适应性的交叉点是端粒酶,一种可以延长端粒的酶。实验调节端粒酶活性是操纵端粒长度的有力工具,并可以观察端粒酶、端粒和个体生活史特征的共变。在这里,我们回顾了在实验室条件下操纵端粒酶活性的研究,并强调了相关的生理和适应性后果。然后,我们讨论了端粒酶对衰老的影响如何可能超越端粒维持。基于这一概述,我们随后提出了未来研究的几个研究途径,以探讨健康、繁殖和生存的个体变异性可能如何与不同的端粒酶活性和表达模式共同进化。这种知识对于充分理解端粒动态在动物衰老进化中的作用至关重要。本文是主题为“理解端粒动态多样性”的特刊的一部分。