East William E, Pretorius Frans
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2017 Jul 28;119(4):041101. doi: 10.1103/PhysRevLett.119.041101. Epub 2017 Jul 24.
We study the growth and saturation of the superradiant instability of a complex, massive vector (Proca) field as it extracts energy and angular momentum from a spinning black hole, using numerical solutions of the full Einstein-Proca equations. We concentrate on a rapidly spinning black hole (a=0.99) and the dominant m=1 azimuthal mode of the Proca field, with real and imaginary components of the field chosen to yield an axisymmetric stress-energy tensor and, hence, spacetime. We find that in excess of 9% of the black hole's mass can be transferred into the field. In all cases studied, the superradiant instability smoothly saturates when the black hole's horizon frequency decreases to match the frequency of the Proca cloud that spontaneously forms around the black hole.
我们使用完整的爱因斯坦 - 普罗卡方程的数值解,研究了一个复的、有质量的矢量(普罗卡)场的超辐射不稳定性的增长和饱和情况,该场从一个旋转的黑洞中提取能量和角动量。我们专注于一个快速旋转的黑洞(a = 0.99)以及普罗卡场的主导m = 1方位模式,场的实部和虚部被选择以产生一个轴对称的应力 - 能量张量,进而产生时空。我们发现超过9%的黑洞质量可以转移到该场中。在所研究的所有情况下,当黑洞的视界频率降低到与在黑洞周围自发形成的普罗卡云的频率相匹配时,超辐射不稳定性会平滑地饱和。