Suppr超能文献

构建能够自主学习和思考的机器。

Building machines that learn and think for themselves.

机构信息

DeepMind,Kings Cross,London N1c4AG,United

出版信息

Behav Brain Sci. 2017 Jan;40:e255. doi: 10.1017/S0140525X17000048.

Abstract

We agree with Lake and colleagues on their list of "key ingredients" for building human-like intelligence, including the idea that model-based reasoning is essential. However, we favor an approach that centers on one additional ingredient: autonomy. In particular, we aim toward agents that can both build and exploit their own internal models, with minimal human hand engineering. We believe an approach centered on autonomous learning has the greatest chance of success as we scale toward real-world complexity, tackling domains for which ready-made formal models are not available. Here, we survey several important examples of the progress that has been made toward building autonomous agents with human-like abilities, and highlight some outstanding challenges.

摘要

我们同意 Lake 和同事提出的构建类人智能的“关键要素”清单,包括基于模型的推理至关重要的观点。然而,我们倾向于采用一种以自主性为中心的方法。具体来说,我们的目标是开发能够构建和利用自己内部模型的智能体,而无需大量人工干预。我们相信,在朝着现实世界的复杂性迈进,解决那些没有现成形式模型的领域时,以自主学习为中心的方法最有可能取得成功。在这里,我们调查了在构建具有类人能力的自主智能体方面取得的一些重要进展,并强调了一些突出的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验