Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Centre for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA.
Adv Mater. 2018 Mar;30(10). doi: 10.1002/adma.201705374. Epub 2018 Jan 18.
Propyne/propylene (C H /C H ) separation is a critical process for the production of polymer-grade C H . However, optimization of the structure of porous materials for the highly efficient removal of C H from C H remains challenging due to their similar structures and ultralow C H concentration. Here, it is first reported that hybrid ultramicroporous materials with pillared inorganic anions (SiF = SIFSIX, NbOF = NbOFFIVE) can serve as highly selective C H traps for the removal of trace C H from C H . Especially, it is revealed that the pyrazine-based ultramicroporous material with square grid structure for which the pore shape and functional site disposition can be varied in 0.1-0.5 Å scale to match both the shape and interacting sites of guest molecule is an interesting single-molecule trap for C H molecule. The pyrazine-based single-molecule trap enables extremely high C H uptake under ultralow concentration (2.65 mmol g at 3000 ppm, one C H per unit cell) and record selectivity over C H at 298 K (>250). The single-molecule binding mode for C H within ultramicroporous material is validated by X-ray diffraction experiments and modeling studies. The breakthrough experiments confirm that anion-pillared ultramicroporous materials set new benchmarks for the removal of ultralow concentration C H (1000 ppm on SIFSIX-3-Ni, and 10 000 ppm on SIFSIX-2-Cu-i) from C H .
丙炔/丙烯(C3H4/C3H6)分离是生产聚合物级 C3H6 的关键过程。然而,由于它们的结构相似且 C3H4 浓度超低,优化用于从 C3H6 中高效去除 C3H4 的多孔材料的结构仍然具有挑战性。在这里,首次报道了具有支柱无机阴离子(SiF=SIFSIX,NbOF=NbOFFIVE)的混合超微孔材料可用作高度选择性的 C3H4 陷阱,用于从 C3H6 中去除痕量 C3H4。特别是,揭示了具有方网格结构的基于吡嗪的超微孔材料,其孔形状和官能团位置可以在 0.1-0.5Å 范围内变化,以匹配客体分子的形状和相互作用位点,是 C3H4 分子的有趣的单分子陷阱。基于吡嗪的单分子陷阱能够在超低浓度(3000ppm 时为 2.65mmol g-1,每个单元晶格中有一个 C3H4)下实现极高的 C3H4 吸收量,并在 298K 时具有超过 C3H6 的记录选择性(>250)。通过 X 射线衍射实验和建模研究验证了 C3H4 在超微孔材料内的单分子结合模式。突破实验证实,阴离子支柱超微孔材料为去除超低浓度 C3H4(SIFSIX-3-Ni 上为 1000ppm,SIFSIX-2-Cu-i 上为 10000ppm)设定了新的基准。