Suppr超能文献

基于 Spark 的微泡细胞分选器用于微流控流式细胞术。

Spark-generated microbubble cell sorter for microfluidic flow cytometry.

机构信息

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China.

Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China.

出版信息

Cytometry A. 2018 Feb;93(2):222-231. doi: 10.1002/cyto.a.23296. Epub 2018 Jan 18.

Abstract

High-speed and accurate cell sorting is of great significance for cell analysis regarding both bioresearch and clinical application. Different from the jet-in-air sorting of commercial flow cytometers, sorting in fully enclosed and disposal microfluidic chips can avoid aerosols and crosscontamination, thus contributing to the improvement of biosafety and test accuracy. However, current microfluidic sorters usually require complicated structures, or otherwise cannot attain high throughput. In this article, a sorting mechanism for microfluidics is proposed for the first time based on the jet flow induced by the spark-generated cavitation microbubble that can be easily realized by a pair of electrodes. The sorter was integrated into a microfluidic chip based on three-dimensional (3D) hydrodynamic focusing and a binary optical element (BOE) for laser illumination. Besides, several aspects of the sorting mechanism were studied to optimize the device. It achieved a switching time of 250 μs at the sample flow velocity of 5 m/s and performed the continuous operation at 200 Hz. Both the stability of fluorescence signals and the viability of cells were basically maintained. To conclude, this work explores a new on-chip sorting mechanism which possesses the merits of simple structure, easy control, and fast switching. © 2018 International Society for Advancement of Cytometry.

摘要

高速、精确的细胞分选对于生物研究和临床应用中的细胞分析都具有重要意义。与商用流式细胞仪的空气射流分选不同,在完全封闭和处理的微流控芯片中的分选可以避免气溶胶和交叉污染,从而有助于提高生物安全性和测试精度。然而,目前的微流控分选器通常需要复杂的结构,或者否则无法实现高通量。本文首次提出了一种基于火花产生的空化微泡诱导射流的微流控分选机制,该机制可以通过一对电极轻松实现。该分选器被集成到一个微流控芯片中,该芯片基于三维(3D)流体动力学聚焦和用于激光照明的二元光学元件(BOE)。此外,还研究了分选机制的几个方面,以优化该设备。在 5 m/s 的样品流速下,它实现了 250 μs 的切换时间,并以 200 Hz 的频率连续运行。荧光信号的稳定性和细胞的存活率基本保持不变。总之,这项工作探索了一种新的片上分选机制,具有结构简单、易于控制和快速切换的优点。©2018 国际细胞分析学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验