Suppr超能文献

板间具有有限电导率的剪切稀化流体中对流模式的不稳定性。

Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity.

机构信息

LEMTA UMR 7563 CNRS-Université de Lorraine, ENSEM, 2 Avenue de la Forêt de Haye, TSA 60604-54516 Vandoeuvre lès Nancy cedex, France.

出版信息

Phys Rev E. 2017 Oct;96(4-1):043109. doi: 10.1103/PhysRevE.96.043109. Epub 2017 Oct 26.

Abstract

Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.

摘要

瑞利-贝纳尔对流在水平层中非牛顿流体之间的板任意厚度和有限的热导率。本文的第一部分处理主分岔和对流模式的相对稳定性在阈值。弱非线性分析与斯图尔特-劳埃德方程结合使用。平方和卷之间的竞争,作为流体的剪切稀度、板的厚度和板的热导率与流体的热导率之比的函数,进行了研究。传热系数的计算与最大传热原理一致。本文的第二部分涉及对流模式对空间扰动的稳定性和在临界瑞利数附近稳定波数带宽的确定。所采用的方法基于吉布斯-朗道方程。对卷的稳定性的研究表明:(i)对于低剪切稀化效应,稳定波数带由之字形不稳定性和交叉卷不稳定性限制。此外,随着剪切稀化性能的增加,边缘交叉卷不稳定性边界增大;(ii)对于高剪切稀化效应,埃克豪斯不稳定性比交叉卷不稳定性更危险。对于正方形模式,波数选择总是受到之字形不稳定性和“矩形埃克豪斯”不稳定性的限制。此外,稳定波数的宽度随着剪切稀化效应的增加而减小。还呈现了平面图演化的数值模拟,以说明本文中考虑的不同不稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验