Suppr超能文献

采用随机森林分类方法对东北大西洋的鲑鱼虱(Lepeophtheirus salmonis)种群进行遗传指纹分析。

Genetic fingerprinting of salmon louse (Lepeophtheirus salmonis) populations in the North-East Atlantic using a random forest classification approach.

机构信息

Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.

Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.

出版信息

Sci Rep. 2018 Jan 19;8(1):1203. doi: 10.1038/s41598-018-19323-z.

Abstract

Caligid sea lice represent a significant threat to salmonid aquaculture worldwide. Population genetic analyses have consistently shown minimal population genetic structure in North Atlantic Lepeophtheirus salmonis, frustrating efforts to track louse populations and improve targeted control measures. The aim of this study was to test the power of reduced representation library sequencing (IIb-RAD sequencing) coupled with random forest machine learning algorithms to define markers for fine-scale discrimination of louse populations. We identified 1286 robustly supported SNPs among four L. salmonis populations from Ireland, Scotland and Northern Norway. Only weak global structure was observed based on the full SNP dataset. The application of a random forest machine-learning algorithm identified 98 discriminatory SNPs that dramatically improved population assignment, increased global genetic structure and resulted in significant genetic population differentiation. A large proportion of SNPs found to be under directional selection were also identified to be highly discriminatory. Our data suggest that it is possible to discriminate between nearby L. salmonis populations given suitable marker selection approaches, and that such differences might have an adaptive basis. We discuss these data in light of sea lice adaption to anthropogenic and environmental pressures as well as novel approaches to track and predict sea louse dispersal.

摘要

冷海虱对全球鲑鱼养殖业构成重大威胁。种群遗传分析表明,北大西洋鲑鱼海虱的种群遗传结构极小,这使得追踪海虱种群和改进有针对性的控制措施的努力受挫。本研究旨在测试简化代表性文库测序(IIb-RAD 测序)与随机森林机器学习算法相结合,定义用于精细区分虱种群的标记的能力。我们在来自爱尔兰、苏格兰和挪威北部的四个鲑鱼海虱种群中鉴定了 1286 个稳健支持的 SNP。仅基于完整的 SNP 数据集观察到微弱的全局结构。随机森林机器学习算法的应用鉴定了 98 个具有区分能力的 SNP,这极大地改善了种群分配,增加了全局遗传结构,并导致了显著的遗传种群分化。还发现,许多受到定向选择的 SNP 也具有高度区分能力。我们的数据表明,在适当的标记选择方法的基础上,可以区分附近的鲑鱼海虱种群,并且这些差异可能具有适应性基础。我们根据海虱对人为和环境压力的适应以及跟踪和预测海虱传播的新方法来讨论这些数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97bd/5775277/51a4b0dab4b0/41598_2018_19323_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验