Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
Cell Death Dis. 2018 Jan 19;9(2):62. doi: 10.1038/s41419-017-0099-z.
Resting T cells undergo a rapid metabolic shift to glycolysis upon activation in the presence of interleukin (IL)-2, in contrast to oxidative mitochondrial respiration with IL-15. Paralleling these different metabolic states are striking differences in susceptibility to restimulation-induced cell death (RICD); glycolytic effector T cells are highly sensitive to RICD, whereas non-glycolytic T cells are resistant. It is unclear whether the metabolic state of a T cell is linked to its susceptibility to RICD. Our findings reveal that IL-2-driven glycolysis promotes caspase-3 activity and increases sensitivity to RICD. Neither caspase-7, caspase-8, nor caspase-9 activity is affected by these metabolic differences. Inhibition of glycolysis with 2-deoxyglucose reduces caspase-3 activity as well as sensitivity to RICD. By contrast, IL-15-driven oxidative phosphorylation actively inhibits caspase-3 activity through its glutathionylation. We further observe active caspase-3 in the lipid rafts of glycolytic but not non-glycolytic T cells, suggesting a proximity-induced model of self-activation. Finally, we observe that effector T cells during influenza infection manifest higher levels of active caspase-3 than naive T cells. Collectively, our findings demonstrate that glycolysis drives caspase-3 activity and susceptibility to cell death in effector T cells independently of upstream caspases. Linking metabolism, caspase-3 activity, and cell death provides an intrinsic mechanism for T cells to limit the duration of effector function.
静息 T 细胞在白细胞介素 (IL)-2 存在的情况下被激活时会迅速发生代谢转变为糖酵解,而在 IL-15 存在的情况下则为氧化的线粒体呼吸。与这些不同的代谢状态相平行的是对再刺激诱导细胞死亡 (RICD) 的敏感性存在显著差异;糖酵解效应 T 细胞对 RICD 高度敏感,而非糖酵解 T 细胞则具有抗性。目前尚不清楚 T 细胞的代谢状态是否与其对 RICD 的敏感性有关。我们的研究结果表明,IL-2 驱动的糖酵解促进了 caspase-3 的活性,并增加了对 RICD 的敏感性。这些代谢差异并不影响 caspase-7、caspase-8 或 caspase-9 的活性。用 2-脱氧葡萄糖抑制糖酵解可降低 caspase-3 的活性和对 RICD 的敏感性。相比之下,IL-15 驱动的氧化磷酸化通过其谷胱甘肽化积极抑制 caspase-3 的活性。我们还观察到糖酵解 T 细胞而非非糖酵解 T 细胞中的脂质筏中有活性 caspase-3,这表明存在一种接近诱导的自我激活模型。最后,我们观察到流感感染期间的效应 T 细胞比幼稚 T 细胞表现出更高水平的活性 caspase-3。总之,我们的研究结果表明,糖酵解独立于上游半胱天冬酶驱动效应 T 细胞中的 caspase-3 活性和细胞死亡敏感性。将代谢、caspase-3 活性和细胞死亡联系起来,为 T 细胞提供了一种内在机制来限制效应功能的持续时间。