Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia; Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
J Colloid Interface Sci. 2018 Apr 15;516:34-47. doi: 10.1016/j.jcis.2018.01.041. Epub 2018 Jan 11.
Graphene nanoplatelets (GNPs) can be dispersed in natural rubber matrices using surfactants. The stability and properties of these composites can be optimized by the choice of surfactants employed as stabilizers. Surfactants can be designed and synthesized to have enhanced compatibility with GNPs as compared to commercially available common surfactants. Including aromatic groups in the hydrophobic chain termini improves graphene compatibility of surfactants, which is expected to increase with the number of aromatic moieties per surfactant molecule. Hence, it is of interest to study the relationship between molecular structure, dispersion stability and electrical conductivity enhancement for single-, double-, and triple-chain anionic graphene-compatible surfactants.
Graphene-philic surfactants, bearing two and three chains phenylated at their chain termini, were synthesized and characterized by proton nuclear magnetic resonance (H NMR) spectroscopy. These were used to formulate and stabilize dispersion of GNPs in natural rubber latex matrices, and the properties of systems comprising the new phenyl-surfactants were compared with commercially available surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). Raman spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM) were used to study structural properties of the materials. Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between surfactant architecture and nanocomposite properties. Small-angle neutron scattering (SANS) was used to study self-assembly structure of surfactants.
Of these different surfactants, the tri-chain aromatic surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly graphene-compatible (nanocomposite electrical conductivity = 2.22 × 10 S cm), demonstrating enhanced electrical conductivity over nine orders of magnitude higher than neat natural rubber-latex matrix (1.51 × 10 S cm). Varying the number of aromatic moieties in the surfactants appears to cause significant differences to the final properties of the nanocomposites.
通过使用表面活性剂,可将石墨烯纳米片(GNPs)分散在天然橡胶基质中。通过选择用作稳定剂的表面活性剂,可以优化这些复合材料的稳定性和性能。与市售的普通表面活性剂相比,可以设计和合成表面活性剂,以使其与 GNPs 具有更好的相容性。在疏水链末端包含芳族基团可提高表面活性剂与石墨烯的相容性,预计随着每个表面活性剂分子中芳族部分的数量的增加,这种相容性会提高。因此,研究单链、双链和三链阴离子型与石墨烯相容的表面活性剂的分子结构、分散稳定性和电导率增强之间的关系很有意义。
合成了带有两个和三个末端苯基链的亲石墨烯表面活性剂,并通过质子核磁共振(H NMR)光谱对其进行了表征。这些表面活性剂用于在天然橡胶胶乳基质中配制和稳定 GNPs 的分散体,并将新苯基表面活性剂的性能与市售的表面活性剂十二烷基硫酸钠(SDS)和十二烷基苯磺酸钠(SDBS)进行了比较。拉曼光谱、场发射扫描电子显微镜(FESEM)、原子力显微镜(AFM)和高分辨率透射电子显微镜(HRTEM)用于研究材料的结构性质。电导率测量和 Zeta 电位测量用于评估表面活性剂结构与纳米复合材料性质之间的关系。小角中子散射(SANS)用于研究表面活性剂的自组装结构。
在这些不同的表面活性剂中,三链芳族表面活性剂 TC3Ph3(1,5-二氧代-1,5-双(3-苯基丙氧基)-3-((3-苯基丙氧基)羰基)戊烷-2-磺酸钠)被证明是高度与石墨烯相容的(纳米复合材料电导率=2.22×10 S cm),与纯天然橡胶胶乳基质(1.51×10 S cm)相比,电导率提高了九个数量级以上。表面活性剂中芳族部分数量的变化似乎会对纳米复合材料的最终性能产生显著影响。