Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and Department of Electronics, Peking University, Beijing 100871, China.
Nanoscale. 2018 Feb 8;10(6):2704-2710. doi: 10.1039/c7nr08874d.
Semiconductor BiOSe nanolayers of high crystal quality have been realized via epitaxial growth. These two-dimensional (2D) materials possess excellent electron transport properties with potential application in nanoelectronics. It is also strongly expected that the 2D BiOSe nanolayers can be an excellent material platform for developing spintronic and topological quantum devices if the presence of strong spin-orbit interaction in the 2D materials can be experimentally demonstrated. Herein, we report the experimental determination of the strength of spin-orbit interactions in BiOSe nanoplates through magnetotransport measurements. The nanoplates are epitaxially grown by chemical vapor deposition, and the magnetotransport measurements are performed at low temperatures. The measured magnetoconductance exhibits a crossover behavior from weak antilocalization to weak localization at low magnetic fields with increasing temperature or decreasing back gate voltage. We have analyzed this transition behavior of magnetoconductance based on an interference theory, which describes quantum correction to the magnetoconductance of a 2D system in the presence of spin-orbit interaction. Dephasing length and spin relaxation length are extracted from the magnetoconductance measurements. Compared to the case of other semiconductor nanostructures, the extracted relatively short spin relaxation length of ∼150 nm indicates the existence of a strong spin-orbit interaction in BiOSe nanolayers.
通过外延生长,实现了具有高晶体质量的半导体 BiOSe 纳米层。这些二维(2D)材料具有优异的电子输运性能,有望在纳米电子学中得到应用。如果能够在二维材料中实验证明强的自旋轨道相互作用的存在,那么 2D BiOSe 纳米层也有望成为开发自旋电子学和拓扑量子器件的理想材料平台。在此,我们通过磁输运测量报告了在 BiOSe 纳米片中确定自旋轨道相互作用强度的实验结果。纳米片是通过化学气相沉积外延生长的,磁输运测量是在低温下进行的。随着温度的升高或背栅电压的降低,测量得到的磁导率表现出从弱反局域到弱局域的交叉行为。我们基于干涉理论分析了磁导率的这种转变行为,该理论描述了在存在自旋轨道相互作用的情况下,二维系统对磁导率的量子修正。通过磁导率测量提取了退相长度和自旋弛豫长度。与其他半导体纳米结构的情况相比,提取出的相对较短的自旋弛豫长度约 150nm 表明 BiOSe 纳米层中存在强的自旋轨道相互作用。