Folkman Scott J, Zhou Meng, Nicki Matthew, Finke Richard G
Chemistry Department, Colorado State University , Fort Collins, Colorado 80523, United States.
Department of Natural Sciences, Lawrence Technological University , 21000 West Ten Mile Road, Southfield, Michigan 48075, United States.
Inorg Chem. 2018 Feb 5;57(3):1517-1526. doi: 10.1021/acs.inorgchem.7b02831. Epub 2018 Jan 24.
The synthesis of CoO core nanoparticles from cobalt acetate is explored in alcohol solvents plus limited water using O as oxidant and NHOH as the base, all in comparison to controls in water alone employing the otherwise identical synthetic procedure. Syntheses in EtOH or t-BuOH cosolvents with limited water yield phase-pure and size-controlled (3 ± 1 nm) CoO-core nanoparticles. In marked contrast, the synthesis in water alone yields mixed phases of CoO and β-Co(OH) with a very large particle-size range (14-400 nm). Importantly, acidic reductive digestion of the CoO particles followed by H NMR on the resultant solution yields no detectable EtOH in nanoparticles prepared in EtOH, nor any detectable t-BuOH in nanoparticles prepared in t-BuOH (∼5% detection limits for each alcohol), despite the dramatic effect of each alcohol cosolvent on the resultant cobalt-oxide product. Instead, in both cases HOAc is detected and quantified, indicative of OAc as a surface ligand-and not EtO or t-BuO as the surface ligand. The resultant ROH cosolvent-derived particles were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy, plus elemental analysis to arrive at an approximate, average molecular formula in the case of the particles prepared in EtOH, {[CoO(CHO)][(NH)(H)]·(HO)}. The key finding is that, because EtOH and t-BuOH have a substantial effect on the phase- and size-dispersion of the cobalt-oxide nanoparticle product, yet the intact alcohol does not show up in the final CoO nanoparticle product, the effect of these alcohols cannot be a surface-ligand thermodynamic effect on the net nanoparticle formation reaction. A careful search of the literature provided scattered, but consistent, literature in which anions or other additives have large effects on metal-oxide nanoparticle formation reactions, yet also do not show up in the nanoparticle products-that is, where the observed effects are again not due to binding by that anion or other additive in a surface-ligand thermodynamic effect on the overall reaction. Alternative hypotheses are provided as to the origin of ROH solvent effects on metal-oxide nanoparticles.
以氧气为氧化剂、氢氧化铵为碱,在含有限量水的醇类溶剂中探索了由醋酸钴合成氧化钴核纳米颗粒的方法,并与仅在水中采用相同合成步骤的对照实验进行了比较。在乙醇或叔丁醇共溶剂中且含有有限量水的条件下合成得到了相纯且尺寸可控(3±1纳米)的氧化钴核纳米颗粒。与之形成显著对比的是,仅在水中合成得到的是氧化钴和β-氢氧化钴的混合相,粒径范围非常大(14 - 400纳米)。重要的是,对氧化钴颗粒进行酸性还原消解,然后对所得溶液进行核磁共振氢谱分析,发现在乙醇中制备的纳米颗粒中未检测到乙醇,在叔丁醇中制备的纳米颗粒中也未检测到叔丁醇(每种醇的检测限约为5%),尽管每种醇共溶剂对所得氧化钴产物有显著影响。相反,在这两种情况下均检测并定量了醋酸,这表明醋酸根是表面配体,而不是乙氧基或叔丁氧基作为表面配体。通过粉末X射线衍射、傅里叶变换红外光谱、高分辨率透射电子显微镜以及元素分析对所得的由醇共溶剂衍生的颗粒进行了表征,对于在乙醇中制备的颗粒,得出了一个近似的平均分子式{[CoO(CH₃COO)][(NH₄)(H₂O)]·(H₂O)}。关键发现是,由于乙醇和叔丁醇对氧化钴纳米颗粒产物的相和尺寸分散有显著影响,但完整的醇并未出现在最终的氧化钴纳米颗粒产物中,所以这些醇的作用不可能是对纳米颗粒净形成反应的表面配体热力学效应。对文献进行仔细检索后发现了一些零散但一致的文献,其中阴离子或其他添加剂对金属氧化物纳米颗粒形成反应有很大影响,但同样未出现在纳米颗粒产物中,也就是说,观察到的效应同样不是由于该阴离子或其他添加剂在对整体反应的表面配体热力学效应中的结合作用。文中还提供了关于醇类溶剂对金属氧化物纳米颗粒影响的起源的其他假设。