Sánchez-Murcia Pedro A, Nogueira Juan J, González Leticia
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Str. 17, A-1090 Vienna, Austria.
J Phys Chem Lett. 2018 Feb 15;9(4):683-688. doi: 10.1021/acs.jpclett.7b03357. Epub 2018 Jan 29.
The characterization of electronic properties of metal complexes embedded in membrane environments is of paramount importance to develop efficient photosensitizers in optogenetic applications. Molecular dynamics and QM/MM simulations together with quantitative wave function analysis reveal a directional electronic redistribution of the exciton formed upon excitation of [Ru(bpy)(bpy-C17)] when going from water to a lipid bilayer, despite the fact that the media influence neither the metal-to-ligand charge-transfer character nor the excitation energy of the absorption spectra. When the photosensitizer is embedded into the DOPC lipid membrane, exciton population is mainly located in the bypyridyl sites proximal to the positively charged surface of the bilayer due to electrostatic interactions. This behavior shows that the electronic structure of metal complexes can be controlled through the binding to external species, underscoring the crucial role of the environment in directing the electronic flow upon excitation and thus helping rational tuning of optogenetic agents.
表征嵌入膜环境中的金属配合物的电子性质对于在光遗传学应用中开发高效的光敏剂至关重要。分子动力学和QM/MM模拟以及定量波函数分析表明,尽管介质既不影响金属到配体的电荷转移特性,也不影响吸收光谱的激发能,但当从水转移到脂质双层时,[Ru(bpy)(bpy-C17)]激发后形成的激子会发生定向电子重新分布。当光敏剂嵌入DOPC脂质膜中时,由于静电相互作用,激子主要位于靠近双层带正电表面的联吡啶位点。这种行为表明,金属配合物的电子结构可以通过与外部物种的结合来控制,突出了环境在激发时引导电子流动的关键作用,从而有助于合理调整光遗传学试剂。