Suppr超能文献

显生宙 O 期和陆生动物的早期演化。

Phanerozoic O and the early evolution of terrestrial animals.

机构信息

Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA

Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA.

出版信息

Proc Biol Sci. 2018 Jan 31;285(1871). doi: 10.1098/rspb.2017.2631.

Abstract

Concurrent gaps in the Late Devonian/Mississippian fossil records of insects and tetrapods (i.e. Romer's Gap) have been attributed to physiological suppression by low atmospheric O Here, updated stable isotope inputs inform a reconstruction of Phanerozoic oxygen levels that contradicts the low oxygen hypothesis (and contradicts the purported role of oxygen in the evolution of gigantic insects during the late Palaeozoic), but reconciles isotope-based calculations with other proxies, like charcoal. Furthermore, statistical analysis demonstrates that the gap between the first Devonian insect and earliest diverse insect assemblages of the Pennsylvanian (Bashkirian Stage) requires no special explanation if insects were neither diverse nor abundant prior to the evolution of wings. Rather than tracking physiological constraint, the fossil record may accurately record the transformative evolutionary impact of insect flight.

摘要

昆虫与四足动物(即罗默间断层)在晚泥盆世/密西西比纪化石记录中的同时性空白(即罗默间断层)归因于大气中低氧对生理的抑制。这里,更新的稳定同位素输入提供了一个对显生宙氧水平的重建,该重建与低氧假说相矛盾(并与古生代晚期巨型昆虫进化中氧的作用相矛盾),但将基于同位素的计算与其他指标(如木炭)相协调。此外,统计分析表明,如果昆虫在翅膀进化之前既不多样也不丰富,那么第一只泥盆纪昆虫与宾夕法尼亚纪(巴什基里亚阶)最早的多样昆虫组合之间的空白就不需要特别解释。化石记录可能准确地记录了昆虫飞行的变革性进化影响,而不是追踪生理限制。

相似文献

1
Phanerozoic O and the early evolution of terrestrial animals.
Proc Biol Sci. 2018 Jan 31;285(1871). doi: 10.1098/rspb.2017.2631.
2
A complete insect from the Late Devonian period.
Nature. 2012 Aug 2;488(7409):82-5. doi: 10.1038/nature11281.
3
Confirmation of Romer's Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16818-22. doi: 10.1073/pnas.0607824103. Epub 2006 Oct 25.
4
An early tetrapod from 'Romer's Gap'.
Nature. 2002 Jul 4;418(6893):72-6. doi: 10.1038/nature00824.
5
A century and a half of research on the evolution of insect flight.
Arthropod Struct Dev. 2018 Jul;47(4):322-327. doi: 10.1016/j.asd.2017.11.007. Epub 2017 Dec 6.
6
A Diverse Tetrapod Fauna at the Base of 'Romer's Gap'.
PLoS One. 2015 Apr 27;10(4):e0125446. doi: 10.1371/journal.pone.0125446. eCollection 2015.
8
Atmospheric oxygen level and the evolution of insect body size.
Proc Biol Sci. 2010 Jul 7;277(1690):1937-46. doi: 10.1098/rspb.2010.0001. Epub 2010 Mar 10.
9
Late Carboniferous paleoichnology reveals the oldest full-body impression of a flying insect.
Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6515-9. doi: 10.1073/pnas.1015948108. Epub 2011 Apr 4.
10
Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer's Gap.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4532-7. doi: 10.1073/pnas.1117332109. Epub 2012 Mar 5.

引用本文的文献

1
A Late Devonian coelacanth reconfigures actinistian phylogeny, disparity, and evolutionary dynamics.
Nat Commun. 2024 Sep 12;15(1):7529. doi: 10.1038/s41467-024-51238-4.
2
The possible adaption of the human respiratory system to past atmospheres.
Exp Physiol. 2024 Jun;109(6):833-836. doi: 10.1113/EP091713. Epub 2024 Mar 27.
4
Was There a Cambrian Explosion on Land? The Case of Arthropod Terrestrialization.
Biology (Basel). 2022 Oct 17;11(10):1516. doi: 10.3390/biology11101516.
5
Extreme variability in atmospheric oxygen levels in the late Precambrian.
Sci Adv. 2022 Oct 14;8(41):eabm8191. doi: 10.1126/sciadv.abm8191.
6
Integrated phylogenomics and fossil data illuminate the evolution of beetles.
R Soc Open Sci. 2022 Mar 23;9(3):211771. doi: 10.1098/rsos.211771. eCollection 2022 Mar.
7
A revised lower estimate of ozone columns during Earth's oxygenated history.
R Soc Open Sci. 2022 Jan 5;9(1):211165. doi: 10.1098/rsos.211165. eCollection 2022 Jan.
8
Dynamics of Silurian Plants as Response to Climate Changes.
Life (Basel). 2021 Aug 31;11(9):906. doi: 10.3390/life11090906.
9
A long-term record of early to mid-Paleozoic marine redox change.
Sci Adv. 2021 Jul 7;7(28). doi: 10.1126/sciadv.abf4382. Print 2021 Jul.
10
Minimum levels of atmospheric oxygen from fossil tree roots imply new plant-oxygen feedback.
Geobiology. 2021 May;19(3):250-260. doi: 10.1111/gbi.12435. Epub 2021 Feb 19.

本文引用的文献

1
Phylogenetic and environmental context of a Tournaisian tetrapod fauna.
Nat Ecol Evol. 2016 Dec 5;1(1):2. doi: 10.1038/s41559-016-0002.
2
The presumed oldest flying insect: more likely a myriapod?
PeerJ. 2017 May 30;5:e3402. doi: 10.7717/peerj.3402. eCollection 2017.
3
Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.
Curr Biol. 2017 Jan 23;27(2):263-269. doi: 10.1016/j.cub.2016.11.021. Epub 2017 Jan 12.
4
The impact of fire on the Late Paleozoic Earth system.
Front Plant Sci. 2015 Sep 23;6:756. doi: 10.3389/fpls.2015.00756. eCollection 2015.
5
Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva.
BMC Evol Biol. 2015 Sep 29;15:208. doi: 10.1186/s12862-015-0428-8.
6
A new mid-Silurian aquatic scorpion-one step closer to land?
Biol Lett. 2015 Jan;11(1):20140815. doi: 10.1098/rsbl.2014.0815.
7
Evolution of insect wings and development - new details from Palaeozoic nymphs.
Biol Rev Camb Philos Soc. 2016 Feb;91(1):53-69. doi: 10.1111/brv.12159. Epub 2014 Nov 14.
8
Phylogenomics resolves the timing and pattern of insect evolution.
Science. 2014 Nov 7;346(6210):763-7. doi: 10.1126/science.1257570. Epub 2014 Nov 6.
9
Fossil evidence for key innovations in the evolution of insect diversity.
Proc Biol Sci. 2014 Oct 22;281(1793). doi: 10.1098/rspb.2014.1823.
10
The earliest known holometabolous insects.
Nature. 2013 Nov 14;503(7475):257-61. doi: 10.1038/nature12629. Epub 2013 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验