Suppr超能文献

通过分级胶体桥接实现 PBTTT-C 溶胶-凝胶转变。

PBTTT-C sol-gel transition by hierarchical colloidal bridging.

机构信息

Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.

出版信息

Soft Matter. 2018 Feb 14;14(7):1270-1280. doi: 10.1039/c7sm02493b.

Abstract

A versatile conjugated polymer, poly(2,5-bis(3-hexadecyllthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT-C, with M = 61 309 g mol), in a relatively good solvent (chlorobenzene, CB) medium is shown to produce gels through hierarchical colloidal bridging. Multiscale static/dynamic light and X-ray scattering analysis schemes along with complementary microscopy imaging techniques clearly reveal that upon cooling from the solution state at 80 °C to various gelation temperatures (5, 10, and 15 °C), rod-like colloidal pBTTT-C aggregates morph into spherical ones, triggering hierarchical colloid formation and bridging that eventually turn the solution into a gel after about one-day aging. A certain fraction of primal packing units-spherical gelators (∼1 nm in mean radius)-constitute the spherical building particles (∼10 nm) noted above, which in turn constitute loose-packing aggregate clusters (∼300 nm) in the sol state. As gelation proceeds, the aggregate cluster interiors tighten substantially, and micrometer-sized clusters (∼3 μm) formed by them begin to take shape and further interconnect to form the gel network (mean porosity size ∼240 nm and spatial inhomogeneity length ∼20 μm). Rheological measurements and kinetic analysis reveal that the gelation temperature can also have a notable impact on gel microstructure, gelation rate, and mechanical strength, resulting in, for instance, a prominently nonergodic and porous structure for the soft gel incubated at a higher temperature T = 15 °C. The ac conductivity exhibits a notable upturn near pBTTT-C/CB gelation, well above those achieved by the counterpart pBTTT-C solutions, which, in interesting contrast, cannot be brought to the gel phase under similar experimental conditions.

摘要

一种多功能共轭聚合物,聚(2,5-双(3-己基噻吩-2-基)噻吩[3,2-b]噻吩)(pBTTT-C,M = 61309 g/mol),在相对良好的溶剂(氯苯,CB)介质中通过分级胶体桥接产生凝胶。多尺度静态/动态光和 X 射线散射分析方案以及互补的显微镜成像技术清楚地表明,在从 80°C 的溶液状态冷却到各种凝胶化温度(5、10 和 15°C)时,棒状胶体 pBTTT-C 聚集体形态转变为球形,引发分级胶体形成和桥接,在大约一天的老化后,溶液最终变成凝胶。一定比例的原始组装单元-球形凝胶剂(平均半径约为 1nm)构成了上述的球形构建粒子(约 10nm),它们反过来又构成了溶胶状态下疏松堆积的聚集体簇(约 300nm)。随着凝胶化的进行,聚集体簇内部显著变紧,由它们形成的微米级簇(约 3μm)开始形成,并进一步相互连接形成凝胶网络(平均孔隙尺寸约为 240nm 和空间不均匀性长度约为 20μm)。流变学测量和动力学分析表明,凝胶化温度也会对凝胶的微观结构、凝胶化速率和机械强度产生显著影响,例如,在较高温度 T = 15°C 下孵育的软凝胶具有明显的非遍历和多孔结构。在 pBTTT-C/CB 凝胶化附近,交流电导率明显上升,远高于相应的 pBTTT-C 溶液达到的值,有趣的是,在类似的实验条件下,它们不能被带到凝胶相。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验