Suppr超能文献

通过结合ReaxFF和量子力学反应动力学预测的拟用含能材料(MTO和MTO3N)在查普曼-焦盖特状态下的爆轰特性。

Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics.

作者信息

Zhou Tingting, Zybin Sergey V, Goddard William A, Cheng Tao, Naserifar Saber, Jaramillo-Botero Andres, Huang Fenglei

机构信息

Institute of Applied Physics and Computational Mathematics, Beijing, 100094, P. R. China.

出版信息

Phys Chem Chem Phys. 2018 Feb 7;20(6):3953-3969. doi: 10.1039/c7cp07321f.

Abstract

The development of new energetic materials (EMs) with improved detonation performance but low sensitivity and environmental impact is of considerable importance for applications in civilian and military fields. Often new designs are difficult to synthesize so predictions of performance in advance is most valuable. Examples include MTO (2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide) and MTO3N (2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide) suggested by Klapötke as candidate EMs but not yet successfully synthesized. We propose and apply to these materials a new approach, RxMD(cQM), in which ReaxFF Reactive Molecular Dynamics (RxMD) is first used to predict the reaction products and thermochemical properties at the Chapman Jouguet (CJ) state for which the system is fully reacted and at chemical equilibrium. Quantum mechanics dynamics (QMD) is then applied to refine the pressure of the ReaxFF predicted CJ state to predict a more accurate final CJ point, leading to a very practical calculation that includes accurate long range vdW interactions needed for accurate pressure. For MTO, this RxMD(cQM) method predicts a detonation pressure of P = 40.5 GPa and a detonation velocity of D = 8.8 km s, while for MTO3N it predicts P = 39.9 GPa and D = 8.4 km s, making them comparable to HMX (P = 39.5 GPa, D = 9.1 km s) and worth synthesizing. This first-principles-based RxMD(cQM) methodology provides an excellent compromise between computational cost and accuracy including the formation of clusters that burn too slowly, providing a practical mean of assessing detonation performances for novel candidate EMs. This RxMD(cQM) method that links first principles atomistic molecular dynamics simulations with macroscopic properties to promote in silico design of new EMs should also be of general applicability to materials synthesis and processing.

摘要

开发具有改进爆轰性能、低敏感度和低环境影响的新型含能材料对于民用和军事领域的应用至关重要。新设计往往难以合成,因此提前预测性能非常有价值。例如,克拉波克提出的MTO(2,4,6-三氨基-1,3,5-三嗪-1,3,5-三氧化物)和MTO3N(2,4,6-三硝基-1,3,5-三嗪-1,3,5-三氧化物)作为候选含能材料,但尚未成功合成。我们提出并将一种新方法RxMD(cQM)应用于这些材料,其中首先使用反应分子动力学(RxMD)预测在查普曼-朱盖(CJ)状态下的反应产物和热化学性质,此时系统完全反应并处于化学平衡。然后应用量子力学动力学(QMD)来细化反应分子动力学预测的CJ状态的压力,以预测更准确的最终CJ点,从而得到一个非常实用的计算方法,该方法包括准确压力所需的精确长程范德华相互作用。对于MTO,这种RxMD(cQM)方法预测爆轰压力P = 40.5 GPa,爆轰速度D = 8.8 km/s,而对于MTO3N,它预测P = 39.9 GPa,D = 8.4 km/s,使其与奥克托今(HMX,P = 39.5 GPa,D = 9.1 km/s)相当,值得合成。这种基于第一性原理的RxMD(cQM)方法在计算成本和准确性之间提供了很好的平衡,包括燃烧过慢的团簇的形成,为评估新型候选含能材料的爆轰性能提供了一种实用手段。这种将第一性原理原子分子动力学模拟与宏观性质联系起来以促进新型含能材料计算机辅助设计的RxMD(cQM)方法也应普遍适用于材料合成和加工。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验