Department of Chemistry , University of Houston , Houston , Texas 77204 , United States.
Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.
Acc Chem Res. 2018 Apr 17;51(4):860-868. doi: 10.1021/acs.accounts.7b00541. Epub 2018 Jan 25.
Dynamic protein-DNA interactions constitute highly robust cellular machineries to fulfill cellular functions. A vast number of studies have focused on how DNA-binding proteins search for and interact with their target DNA segments and on what cellular cues can regulate protein binding, for which protein concentration is a most obvious one. In contrast, how protein unbinding could be regulated by protein concentration has evaded attention because protein unbinding from DNA is typically a unimolecular reaction and thus concentration independent. Recent single-molecule studies from multiple research groups have uncovered that protein concentration can facilitate the unbinding of DNA-bound proteins, revealing regulation of protein unbinding as another mechanistic paradigm for gene regulation. In this Account, we review these recent in vitro and in vivo single-molecule experiments that uncovered the concentration-facilitated protein unbinding by multiple types of DNA-binding proteins, including sequence-nonspecific DNA-binding proteins (e.g., nucleoid-associated proteins, NAP), sequence-specific DNA-binding proteins (e.g., metal-responsive transcription regulators CueR and ZntR), sequence-neutral single-stranded DNA-binding proteins (e.g., Replication protein A, RPA), and DNA polymerases. For the in vitro experiments, Marko's group investigated the exchange of GFP-tagged DNA-bound NAPs with nontagged NAPs in solution of increasing concentration using single-molecule magnetic-tweezers fluorescence microscopy. The faster fluorescence intensity decrease with higher nontagged NAP concentrations suggests that DNA-bound NAPs undergo faster exchange with higher free NAP concentrations. Chen's group used single-molecule fluorescence resonance energy transfer measurements to study the unbinding of CueR from its cognate oligomeric DNA. The average microscopic dwell times of DNA-bound states become shorter with increasing CueR concentrations in the surroundings, demonstrating that free CueR proteins can facilitate the unbinding of the incumbent one on DNA through either assisted dissociation or direct substitution. Greene's group studied the unbinding of RPAs from single-stranded DNA using total internal reflection fluorescence microscopy and DNA curtain techniques. The fluorescence intensity versus time traces show faster decay with higher wild-type RPA concentrations, indicating that DNA-bound RPAs can undergo a concentration-facilitated exchange when encountering excess free RPA. van Oijen's group investigated the leading/lagging-strand polymerase exchange events in the bacteriophage T7 and E. coli replication systems using a combination of single-molecule fluorescence microscopy and DNA-flow-stretching assay. The processivity was observed to have larger decrease when the concentration of the Y526F polymerase mutant increases, indicating that the unbinding of the polymerase is also concentration-dependent. Using stroboscopic imaging and single-molecule tracking, Chen's group further advanced their study into living bacterial cells. They found CueR, as well as its homologue ZntR, shows concentration-enhanced unbinding from its DNA-binding site in vivo. Mechanistic consensus has emerged from these in vitro and in vivo single-molecule studies that encompass a range of proteins with distinct biological functions. It involves multivalent contacts between protein and DNA. The multivalency enables the formation of ternary complexes as intermediates, which subsequently give rise to concentration-enhanced protein unbinding. As multivalent contacts are ubiquitous among DNA-interacting proteins, this multivalency-enabled facilitated unbinding mechanism thus provides a potentially general mechanistic paradigm in regulating protein-DNA interactions.
动态的蛋白质-DNA 相互作用构成了高度稳健的细胞机制,以完成细胞功能。大量研究集中于 DNA 结合蛋白如何搜索和与它们的靶 DNA 片段相互作用,以及什么细胞信号可以调节蛋白质结合,其中蛋白质浓度是最明显的一个。相比之下,蛋白质解结合如何被蛋白质浓度调节却一直没有得到关注,因为 DNA 结合蛋白的解结合通常是单分子反应,因此与浓度无关。最近来自多个研究小组的单分子研究揭示了蛋白质浓度可以促进 DNA 结合蛋白的解结合,从而揭示了蛋白质解结合作为另一种基因调控机制范例。在本综述中,我们回顾了这些最近的体外和体内单分子实验,这些实验揭示了多种类型的 DNA 结合蛋白的浓度促进的蛋白质解结合,包括序列非特异性 DNA 结合蛋白(例如,核小体相关蛋白,NAP)、序列特异性 DNA 结合蛋白(例如,金属响应转录调节剂 CueR 和 ZntR)、序列中性单链 DNA 结合蛋白(例如,复制蛋白 A,RPA)和 DNA 聚合酶。对于体外实验,Marko 的小组使用单分子磁镊荧光显微镜研究了 GFP 标记的 DNA 结合 NAP 在浓度增加的溶液中与未标记 NAP 的交换。未标记 NAP 浓度越高,荧光强度下降越快,这表明 DNA 结合 NAP 与较高的游离 NAP 浓度更快地进行交换。Chen 的小组使用单分子荧光共振能量转移测量来研究 CueR 从其同源寡聚体 DNA 上的解结合。在周围环境中 CueR 浓度增加时,DNA 结合状态的平均微观停留时间变短,表明游离的 CueR 蛋白可以通过辅助解离或直接取代促进 DNA 上的固有 CueR 蛋白的解结合。Greene 的小组使用全内反射荧光显微镜和 DNA 幕技术研究 RPA 从单链 DNA 上的解结合。荧光强度随时间的轨迹显示出更高的野生型 RPA 浓度下更快的衰减,表明当遇到过量的游离 RPA 时,DNA 结合的 RPA 可以经历浓度促进的交换。van Oijen 的小组使用单分子荧光显微镜和 DNA 流动拉伸测定的组合,研究了噬菌体 T7 和大肠杆菌复制系统中的前导/滞后链聚合酶交换事件。当 Y526F 聚合酶突变体的浓度增加时,观察到进程性有较大的下降,表明聚合酶的解结合也是浓度依赖性的。通过频闪成像和单分子跟踪,Chen 的小组进一步深入研究了活细菌细胞。他们发现 CueR 及其同源物 ZntR 在体内从其 DNA 结合位点表现出浓度增强的解结合。这些来自体外和体内单分子研究的机制共识涵盖了具有不同生物学功能的一系列蛋白质。它涉及蛋白质与 DNA 之间的多价接触。多价性使三元复合物能够作为中间体形成,随后导致浓度增强的蛋白质解结合。由于多价接触在与 DNA 相互作用的蛋白质中普遍存在,因此这种多价性使解结合更容易的机制为调节蛋白质-DNA 相互作用提供了一个潜在的通用机制范例。