Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75005, Paris, France.
Centre for Quantum Computation and Communication Technology, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia.
Nat Commun. 2018 Jan 25;9(1):363. doi: 10.1038/s41467-017-02775-8.
Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.
飞光量子比特的量子存储是实现量子信息广泛应用的关键。一个关键的性能指标是整体存储和检索效率。到目前为止,尽管最近在高效光脉冲存储方面取得了进展,但量子比特的存储效率仍然有限。在这里,我们报告了一种用于偏振量子比特的量子存储器,它的平均条件保真度高于 99%,效率约为 68%,从而展示了一种可实现的量子比特映射,其中检索到的信息比丢失的信息多。量子比特使用单光子水平的弱相干态进行编码,存储基于铯原子的拉长激光冷却集合体中的电磁感应透明,空间复用用于双轨存储。这种实现方式在两条轨道上都保持了高光学深度,在多路复用和存储效率之间没有妥协。我们的工作为未来测试量子网络功能和先进光子电路提供了一个高效的节点。