文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从PubMed文章中系统识别潜在的疾病-基因关联

Systematic identification of latent disease-gene associations from PubMed articles.

作者信息

Zhang Yuji, Shen Feichen, Mojarad Majid Rastegar, Li Dingcheng, Liu Sijia, Tao Cui, Yu Yue, Liu Hongfang

机构信息

Division of Biostatistics and Bioinformatics, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, United States of America.

Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2018 Jan 26;13(1):e0191568. doi: 10.1371/journal.pone.0191568. eCollection 2018.


DOI:10.1371/journal.pone.0191568
PMID:29373609
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5786305/
Abstract

Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research.

摘要

最近的科学进展积累了大量生物医学知识,为深入了解分子和细胞过程与疾病之间的关系提供了新的见解。文献挖掘是从科学出版物中检索和提取信息以理解这些关联的常用方法之一。然而,由于数据量庞大且与噪声的关联复杂,此类关联数据用于语义知识发现的可解释性具有挑战性。在本研究中,我们描述了一个综合计算框架,旨在通过剖析来自超过2500万篇PubMed索引文章中的146,245个疾病-基因关联来加速潜在疾病机制的发现。我们利用潜在狄利克雷分配(LDA)建模和基于网络的分析,分别发挥它们检测潜在关联和减少大量数据噪声的能力。我们的结果表明:(1)基于LDA的建模能够将相似疾病分组为疾病主题;(2)疾病特异性关联网络遵循无标度网络特性;(3)特定子网模式在疾病特异性关联网络中富集;(4)基因在主题特异性生物学过程中富集。我们的方法为生物医学研究中潜在疾病-基因知识的发现提供了有前景的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b4/5786305/89cc105b8e35/pone.0191568.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b4/5786305/a6543a688eac/pone.0191568.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b4/5786305/468f807857ba/pone.0191568.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b4/5786305/5d71f61517dd/pone.0191568.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b4/5786305/89cc105b8e35/pone.0191568.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b4/5786305/a6543a688eac/pone.0191568.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b4/5786305/468f807857ba/pone.0191568.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b4/5786305/5d71f61517dd/pone.0191568.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b4/5786305/89cc105b8e35/pone.0191568.g004.jpg

相似文献

[1]
Systematic identification of latent disease-gene associations from PubMed articles.

PLoS One. 2018-1-26

[2]
Text mining for identifying topics in the literatures about adolescent substance use and depression.

BMC Public Health. 2016-3-19

[3]
Cardiology record multi-label classification using latent Dirichlet allocation.

Comput Methods Programs Biomed. 2018-7-17

[4]
Network-based analysis reveals distinct association patterns in a semantic MEDLINE-based drug-disease-gene network.

J Biomed Semantics. 2014-8-6

[5]
Finding complex biological relationships in recent PubMed articles using Bio-LDA.

PLoS One. 2011-3-23

[6]
Ranking gene-drug relationships in biomedical literature using Latent Dirichlet Allocation.

Pac Symp Biocomput. 2012

[7]
Automatic Human-like Mining and Constructing Reliable Genetic Association Database with Deep Reinforcement Learning.

Pac Symp Biocomput. 2019

[8]
Analyzing research trends on drug safety using topic modeling.

Expert Opin Drug Saf. 2018-4-6

[9]
Integrative mining of traditional Chinese medicine literature and MEDLINE for functional gene networks.

Artif Intell Med. 2007-10

[10]
Knowledge-Based Topic Model for Unsupervised Object Discovery and Localization.

IEEE Trans Image Process.

引用本文的文献

[1]
SciLinker: a large-scale text mining framework for mapping associations among biological entities.

Front Artif Intell. 2025-3-19

[2]
Cryptic mutations of PLC family members in brain disorders: recent discoveries and a deep-learning-based approach.

Brain. 2023-4-19

[3]
Potential of Point-of-Care and At-Home Assessment of Immune Status via Rapid Cytokine Detection and Questionnaire-Based Anamnesis.

Sensors (Basel). 2021-7-21

[4]
GTX.Digest.VCF: an online NGS data interpretation system based on intelligent gene ranking and large-scale text mining.

BMC Med Genomics. 2019-12-20

[5]
Cross-disease analysis identified novel common genes for both lung adenocarcinoma and lung squamous cell carcinoma.

Oncol Lett. 2019-10

[6]
Rare disease knowledge enrichment through a data-driven approach.

BMC Med Inform Decis Mak. 2019-2-14

[7]
A clinical text classification paradigm using weak supervision and deep representation.

BMC Med Inform Decis Mak. 2019-1-7

本文引用的文献

[1]
Towards Large-scale Twitter Mining for Drug-related Adverse Events.

SHB12 (2012). 2012-10-29

[2]
Reciprocal Crosstalk between Dendritic Cells and Natural Killer T Cells: Mechanisms and Therapeutic Potential.

Front Immunol. 2017-5-24

[3]
Altered B cell signalling in autoimmunity.

Nat Rev Immunol. 2017-7

[4]
ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer's disease.

Proc Natl Acad Sci U S A. 2017-3-28

[5]
APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases.

PLoS Med. 2017-3-28

[6]
Pre-plaque conformational changes in Alzheimer's disease-linked Aβ and APP.

Nat Commun. 2017-3-13

[7]
Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer's Disease.

Stem Cell Reports. 2017-3-9

[8]
The Human Phenotype Ontology in 2017.

Nucleic Acids Res. 2017-1-4

[9]
Genenames.org: the HGNC and VGNC resources in 2017.

Nucleic Acids Res. 2017-1-4

[10]
G Protein-Coupled Receptors (GPCRs) in Alzheimer's Disease: A Focus on BACE1 Related GPCRs.

Front Aging Neurosci. 2016-3-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索