Suppr超能文献

灌注增强肥大软骨细胞基质沉积,但不促进骨形成。

Perfusion Enhances Hypertrophic Chondrocyte Matrix Deposition, But Not the Bone Formation.

机构信息

1 Department of Biomedical Engineering, Columbia University , New York, New York.

2 Department of Biochemical Engineering, University of Applied Sciences Technikum Wien , Austrian Cluster for Tissue Regeneration Vienna, Vienna, Austria .

出版信息

Tissue Eng Part A. 2018 Jun;24(11-12):1022-1033. doi: 10.1089/ten.TEA.2017.0356. Epub 2018 Mar 2.

Abstract

Perfusion bioreactors have been an effective tool in bone tissue engineering. Improved nutrient delivery and the application of shear forces have stimulated osteoblast differentiation and matrix production, allowing for generation of large, clinically sized constructs. Differentiation of hypertrophic chondrocytes has been considered an alternative strategy for bone tissue engineering. We studied the effects of perfusion on hypertrophic chondrocyte differentiation, matrix production, and subsequent bone formation. Hypertrophic constructs were created by differentiation in chondrogenic medium (2 weeks) and maturation in hypertrophic medium (3 weeks). Bioreactors were customized to study a range of flow rates (0-1200 μm/s). During chondrogenic differentiation, increased flow rates correlated with cartilage matrix deposition and the presence of collagen type X. During induced hypertrophic maturation, increased flow rates correlated with bone template deposition and the increased secretion of chondroprotective cytokines. Following an 8-week implantation into the critical-size femoral defect in nude rats, nonperfused constructs displayed larger bone volume, more compact mineralized matrix, and better integration with the adjacent native bone. Therefore, although medium perfusion stimulated the formation of bone template in vitro, it failed to enhance bone regeneration in vivo. However, the promising results of the less developed template in the critical-sized defect warrant further investigation, beyond interstitial flow, into the specific environment needed to optimize hypertrophic chondrocyte-based constructs for bone repair.

摘要

灌流生物反应器在骨组织工程中是一种有效的工具。改进的营养物质输送和切变力的应用刺激了成骨细胞的分化和基质的产生,从而生成了大体积的、临床可用的构建体。肥大软骨细胞的分化已被认为是骨组织工程的另一种策略。我们研究了灌流对肥大软骨细胞分化、基质产生和随后骨形成的影响。通过在软骨形成培养基(2 周)中分化和在肥大培养基(3 周)中成熟来构建肥大构建体。生物反应器经过定制,可研究一系列流速(0-1200μm/s)。在软骨分化期间,增加的流速与软骨基质沉积和胶原 X 型的存在相关。在诱导的肥大成熟期间,增加的流速与骨模板沉积和软骨保护细胞因子的分泌增加相关。在裸鼠股骨临界尺寸缺损中植入 8 周后,未灌流的构建体显示出更大的骨体积、更致密的矿化基质,以及与相邻天然骨更好的整合。因此,尽管培养基灌流刺激了体外骨模板的形成,但它未能增强体内骨再生。然而,在临界尺寸缺损中模板的更不成熟的结果表明,需要进一步研究,超越间质流,进入优化基于肥大软骨细胞的构建体用于骨修复所需的特定环境。

相似文献

1
Perfusion Enhances Hypertrophic Chondrocyte Matrix Deposition, But Not the Bone Formation.
Tissue Eng Part A. 2018 Jun;24(11-12):1022-1033. doi: 10.1089/ten.TEA.2017.0356. Epub 2018 Mar 2.
2
Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.
Biomaterials. 2017 Jan;112:313-323. doi: 10.1016/j.biomaterials.2016.10.014. Epub 2016 Oct 11.
3
Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.
Biomaterials. 2017 Sep;139:202-212. doi: 10.1016/j.biomaterials.2017.05.045. Epub 2017 May 31.
4
Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
Acta Biomater. 2018 Sep 1;77:142-154. doi: 10.1016/j.actbio.2018.07.004. Epub 2018 Jul 4.
5
[Reconstruction of osteochondral defects with a stem cell-based cartilage-polymer construct in a small animal model].
Z Orthop Unfall. 2010 Jan;148(1):31-8. doi: 10.1055/s-0029-1240753. Epub 2010 Feb 11.
6
Flow-perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells.
J Biomech. 2014 Jun 27;47(9):2122-9. doi: 10.1016/j.jbiomech.2013.11.006. Epub 2013 Nov 15.
7
Recapitulating endochondral ossification: a promising route to in vivo bone regeneration.
J Tissue Eng Regen Med. 2015 Aug;9(8):889-902. doi: 10.1002/term.1918. Epub 2014 Jun 11.
10
Chondrogenic potential of skeletal cell populations: selective growth of chondrocytes and their morphogenesis and development in vitro.
Microsc Res Tech. 1998 Oct 15;43(2):156-73. doi: 10.1002/(SICI)1097-0029(19981015)43:2<156::AID-JEMT8>3.0.CO;2-W.

本文引用的文献

1
Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.
Biomaterials. 2017 Sep;139:202-212. doi: 10.1016/j.biomaterials.2017.05.045. Epub 2017 May 31.
2
The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation.
Stem Cells Int. 2016;2016:2470351. doi: 10.1155/2016/2470351. Epub 2016 Dec 15.
3
Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.
Biomaterials. 2017 Jan;112:313-323. doi: 10.1016/j.biomaterials.2016.10.014. Epub 2016 Oct 11.
4
β-catenin activity in late hypertrophic chondrocytes locally orchestrates osteoblastogenesis and osteoclastogenesis.
Development. 2016 Oct 15;143(20):3826-3838. doi: 10.1242/dev.137489. Epub 2016 Sep 12.
5
Tissue-engineered autologous grafts for facial bone reconstruction.
Sci Transl Med. 2016 Jun 15;8(343):343ra83. doi: 10.1126/scitranslmed.aad5904.
8
Tissue Engineering Whole Bones Through Endochondral Ossification: Regenerating the Distal Phalanx.
Biores Open Access. 2015 Apr 1;4(1):229-41. doi: 10.1089/biores.2015.0014. eCollection 2015.
9
Strategies to minimize hypertrophy in cartilage engineering and regeneration.
Genes Dis. 2015 Mar 1;2(1):76-95. doi: 10.1016/j.gendis.2014.12.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验