Zhang Xia, Ding Bei, Cheng Ran, Dixon Sebastian C, Lu Yao
National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials Henan University Kaifeng 475004 P.R. China.
Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK.
Adv Sci (Weinh). 2017 Dec 8;5(1):1700520. doi: 10.1002/advs.201700520. eCollection 2018 Jan.
In recent years, state-of-the-art computational modeling of physical and chemical systems has shown itself to be an invaluable resource in the prediction of the properties and behavior of functional materials. However, construction of a useful computational model for novel systems in both academic and industrial contexts often requires a great depth of physicochemical theory and/or a wealth of empirical data, and a shortage in the availability of either frustrates the modeling process. In this work, computational intelligence is instead used, including artificial neural networks and evolutionary computation, to enhance our understanding of nature-inspired superhydrophobic behavior. The relationships between experimental parameters (water droplet volume, weight percentage of nanoparticles used in the synthesis of the polymer composite, and distance separating the superhydrophobic surface and the pendant water droplet in adhesive force measurements) and multiple objectives (water droplet contact angle, sliding angle, and adhesive force) are built and weighted. The obtained optimal parameters are consistent with the experimental observations. This new approach to materials modeling has great potential to be applied more generally to aid design, fabrication, and optimization for myriad functional materials.
近年来,物理和化学系统的先进计算建模已证明自身是预测功能材料性质和行为的宝贵资源。然而,在学术和工业环境中为新型系统构建有用的计算模型通常需要深厚的物理化学理论和/或丰富的经验数据,而这两者中任何一个的短缺都会阻碍建模过程。在这项工作中,转而使用计算智能,包括人工神经网络和进化计算,来增进我们对受自然启发的超疏水行为的理解。建立并权衡了实验参数(水滴体积、用于合成聚合物复合材料的纳米颗粒的重量百分比以及在粘附力测量中分离超疏水表面和悬垂水滴的距离)与多个目标(水滴接触角、滑动角和粘附力)之间的关系。所获得的最优参数与实验观察结果一致。这种材料建模的新方法具有更广泛应用的巨大潜力,可帮助众多功能材料的设计、制造和优化。