Suppr超能文献

利用声发射和模式识别技术检测大型硬质合金顶锤的裂纹

Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil.

作者信息

Chen Bin, Wang Yanan, Yan Zhaoli

机构信息

School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Sensors (Basel). 2018 Jan 29;18(2):386. doi: 10.3390/s18020386.

Abstract

Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.

摘要

大体积立方高压装置常用于合成金刚石生产。由于实际生产中的高压、高温和交变应力,硬质合金顶锤常出现裂纹,从而导致重大经济损失甚至人员伤亡。传统方法不适用于硬质合金顶锤的裂纹检测。本文关注基于声发射的硬质合金顶锤裂纹检测,将其视为一个模式识别问题;这通过使用麦克风来实现,方法包括声脉冲检测、特征提取、特征优化和分类器设计。通过分析背景噪声的特性,将裂纹声脉冲从原本连续的信号中准确分离出来。随后,提出了三种不同的特征,包括过零率、声压级和线性预测倒谱系数,用于表征裂纹声脉冲。利用主成分分析对原始高维特征进行自适应优化。设计了一种支持向量机与k近邻的混合框架来识别裂纹声脉冲。最后,在实际金刚石车间进行实验,以验证所提方法的可行性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb39/5855036/4112a77043a3/sensors-18-00386-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验