Suppr超能文献

多尺度原理提升涉气能源电催化反应活性

Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.

机构信息

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China.

出版信息

Acc Chem Res. 2018 Apr 17;51(4):881-889. doi: 10.1021/acs.accounts.7b00616. Epub 2018 Jan 31.

Abstract

Various gas-involving energy electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), has witnessed increasing concerns recently for the sake of clean, renewable, and efficient energy technologies. However, these heterogeneous reactions exhibit sluggish kinetics due to multistep electron transfer and only occur at triple-phase boundary regions. Up to now, tremendous attention has been attracted to develop cost-effective and high-performance electrocatalysts to boost the electrocatalytic activities as promising alternatives to noble metal counterparts. In addition to the prolific achievements in materials science, the advances in interface chemistry are also very critical in consideration of the complex phenomena proceeded at triple-phase boundary regions, such as mass diffusion, electron transfer, and surface reaction. Therefore, insightful principles and effective strategies for a comprehensive optimization, ranging from active sites to electrochemical interface, are necessary to fully enhance the electrocatalytic performance aiming at practical device applications. In this Account, we give an overview of our recent attempts toward efficient gas-involving electrocatalysis with multiscale principles from the respect of electronic structure, hierarchical morphology, and electrode interface step by step. It is widely accepted that the intrinsic activity of individual active sites is directly influenced by their electronic structure. Heteroatom doping and topological defects are demonstrated to be the most effective strategies for metal-free nanocarbon materials, while the cationic (e.g., Ni, Fe, Co, Sn) and anionic (e.g., O, S, OH) regulation is revealed to be a promising method for transition metal compounds, to alter the electronic structure and generate high activity. Additionally, the apparent activity of the whole electrocatalyst is significantly impacted by its hierarchical morphology. The active sites of nanocarbon materials are expected to be enriched on the surface for a full exposure and utilization; the hybridization of other active components with nanocarbon materials should achieve a uniform dispersion in nanoscale and a strongly coupled interface, thereby ensuring the electron transfer and boosting the activity. Furthermore, steady and favorable electrochemical interfaces are strongly anticipated in working electrodes for optimal reaction conditions. The powdery electrocatalysts are suggested to be constructed into self-supported electrodes for more efficient and stable catalysis integrally, while the local microenvironment can be versatilely modified by ionic liquids with more beneficial gas solubility and hydrophobicity. Collectively, with the all-round regulation of the electronic structure, hierarchical morphology, and electrode interface, the electrocatalytic performances are demonstrated to be comprehensively facilitated. Such multiscale principles stemmed from the in-depth insights on the structure-activity relationship and heterogeneous reaction characteristics will no doubt pave the way for the future development of gas-involving energy electrocatalysis, and also afford constructive inspirations in a broad range of research including CO reduction reaction, hydrogen peroxide production, nitrogen reduction reaction, and other important electrocatalytic activation of small molecules.

摘要

各种涉及气体的能量电催化,包括氧还原反应(ORR)、氧析出反应(OER)和析氢反应(HER),由于多电子转移,仅在三相界面区域发生,其动力学过程较为缓慢,因此最近为了清洁、可再生和高效的能源技术而受到越来越多的关注。然而,这些多相反应表现出缓慢的动力学特性,为了提高电催化活性,作为贵金属的替代品,人们已经投入了大量的精力来开发具有成本效益和高性能的电催化剂。除了在材料科学方面取得了丰硕的成果外,界面化学的进展对于考虑在三相界面区域进行的复杂现象(如质量扩散、电子转移和表面反应)也非常关键。因此,从活性位点到电化学界面,全面优化的有见地的原理和有效策略对于实际设备应用的电催化性能的全面提高是必要的。在本综述中,我们从电子结构、分级形貌和电极界面的角度,逐步概述了我们在高效涉及气体的电催化方面的最新尝试。广泛接受的观点是,单个活性位点的本征活性直接受到其电子结构的影响。杂原子掺杂和拓扑缺陷被证明是无金属纳米碳材料最有效的策略,而阳离子(如 Ni、Fe、Co、Sn)和阴离子(如 O、S、OH)的调节被揭示是过渡金属化合物的一种很有前途的方法,可改变电子结构并产生高活性。此外,整个电催化剂的明显活性明显受到其分级形貌的影响。纳米碳材料的活性位点有望在表面富集,以实现完全暴露和利用;其他活性成分与纳米碳材料的杂化应在纳米尺度上均匀分散并具有强耦合界面,从而确保电子转移并提高活性。此外,工作电极中应具有稳定且有利的电化学界面,以获得最佳的反应条件。建议将粉状电催化剂构建成自支撑电极,以实现更高效和稳定的整体催化,而通过具有更好气体溶解度和疏水性的离子液体可以灵活地修饰局部微环境。总的来说,通过对电子结构、分级形貌和电极界面的全面调控,电催化性能得到了全面促进。这种多尺度原理源于对结构-活性关系和多相反应特征的深入了解,无疑将为涉及气体的能源电催化的未来发展铺平道路,并为包括 CO 还原反应、过氧化氢生产、氮还原反应和其他小分子的重要电催化活化在内的广泛研究提供建设性的启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验