Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany.
Nucleic Acids Res. 2018 Apr 6;46(6):2868-2882. doi: 10.1093/nar/gky051.
Genomic binding of transcription factors, like the glucocorticoid receptor (GR), is linked to the regulation of genes. However, as we show here, GR binding is a poor predictor of GR-dependent gene regulation even when taking the 3D organization of the genome into account. To connect GR binding sites to the regulation of genes in the endogenous genomic context, we turned to genome editing. By deleting GR binding sites, individually or in combination, we uncovered how cooperative interactions between binding sites contribute to the regulation of genes. Specifically, for the GR target gene GILZ, we show that the simultaneous presence of a cluster of GR binding sites is required for the activity of an individual enhancer and that the GR-dependent regulation of GILZ depends on multiple GR-bound enhancers. Further, by deleting GR binding sites that are shared between different cell types, we show how cell type-specific genome organization and enhancer-blocking can result in cell type-specific wiring of promoter-enhancer contacts. This rewiring allows an individual GR binding site shared between different cell types to direct the expression of distinct transcripts and thereby contributes to the cell type-specific consequences of glucocorticoid signaling.
转录因子(如糖皮质激素受体 (GR))的基因组结合与基因调控有关。然而,正如我们在这里所示,即使考虑到基因组的 3D 结构,GR 结合也不能很好地预测 GR 依赖性基因调控。为了将 GR 结合位点与内源性基因组背景下基因的调控联系起来,我们转向了基因组编辑。通过单独或组合删除 GR 结合位点,我们揭示了结合位点之间的合作相互作用如何有助于基因的调控。具体来说,对于 GR 靶基因 GILZ,我们表明,单个增强子的活性需要一组 GR 结合位点的同时存在,并且 GILZ 的 GR 依赖性调节依赖于多个 GR 结合的增强子。此外,通过删除存在于不同细胞类型之间的 GR 结合位点,我们展示了细胞类型特异性基因组组织和增强子阻断如何导致启动子-增强子接触的细胞类型特异性连接。这种重新布线允许在不同细胞类型之间共享的单个 GR 结合位点指导不同转录本的表达,从而有助于糖皮质激素信号转导的细胞类型特异性后果。