Suppr超能文献

用于去除无人机搭载热成像中树冠阴影像素的自动配准算法,以改进滴灌赤霞珠葡萄园作物水分胁迫指数的估算

Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard.

作者信息

Poblete Tomas, Ortega-Farías Samuel, Ryu Dongryeol

机构信息

Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA), Universidad de Talca, Casilla 747, Talca 3460000, Chile.

Research Program on Adaptation of Agriculture to Climate Change (A2C2), Universidad de Talca, Casilla 747, Talca 3460000, Chile.

出版信息

Sensors (Basel). 2018 Jan 30;18(2):397. doi: 10.3390/s18020397.

Abstract

Water stress caused by water scarcity has a negative impact on the wine industry. Several strategies have been implemented for optimizing water application in vineyards. In this regard, midday stem water potential (SWP) and thermal infrared (TIR) imaging for crop water stress index (CWSI) have been used to assess plant water stress on a vine-by-vine basis without considering the spatial variability. Unmanned Aerial Vehicle (UAV)-borne TIR images are used to assess the canopy temperature variability within vineyards that can be related to the vine water status. Nevertheless, when aerial TIR images are captured over canopy, internal shadow canopy pixels cannot be detected, leading to mixed information that negatively impacts the relationship between CWSI and SWP. This study proposes a methodology for automatic coregistration of thermal and multispectral images (ranging between 490 and 900 nm) obtained from a UAV to remove shadow canopy pixels using a modified scale invariant feature transformation (SIFT) computer vision algorithm and Kmeans++ clustering. Our results indicate that our proposed methodology improves the relationship between CWSI and SWP when shadow canopy pixels are removed from a drip-irrigated Cabernet Sauvignon vineyard. In particular, the coefficient of determination (R²) increased from 0.64 to 0.77. In addition, values of the root mean square error (RMSE) and standard error (SE) decreased from 0.2 to 0.1 MPa and 0.24 to 0.16 MPa, respectively. Finally, this study shows that the negative effect of shadow canopy pixels was higher in those vines with water stress compared with well-watered vines.

摘要

水资源短缺导致的水分胁迫对葡萄酒行业产生负面影响。人们已经实施了多种策略来优化葡萄园的水分应用。在这方面,午间茎水势(SWP)和用于作物水分胁迫指数(CWSI)的热红外(TIR)成像已被用于逐株评估植物水分胁迫,而未考虑空间变异性。无人机搭载的TIR图像用于评估葡萄园冠层温度变异性,其与葡萄树水分状况相关。然而,当在冠层上方拍摄航空TIR图像时,无法检测到冠层内部的阴影像素,从而导致混合信息,对CWSI和SWP之间的关系产生负面影响。本研究提出了一种方法,用于对从无人机获取的热图像和多光谱图像(波长范围在490至900纳米之间)进行自动配准,使用改进的尺度不变特征变换(SIFT)计算机视觉算法和Kmeans++聚类去除冠层阴影像素。我们的结果表明,当从滴灌赤霞珠葡萄园去除冠层阴影像素时,我们提出的方法改善了CWSI和SWP之间的关系。特别是,决定系数(R²)从0.64增加到0.77。此外,均方根误差(RMSE)和标准误差(SE)的值分别从0.2降至0.1兆帕和从0.24降至0.16兆帕。最后,本研究表明,与水分充足的葡萄树相比,水分胁迫的葡萄树中冠层阴影像素的负面影响更大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验