Earth Sciences Department, ETH Zurich, Sonneggstrasse 5, Zurich, 8092, Switzerland.
Physics of Geological Processes, University of Oslo, Sem Sælands vei 24 Fysikkbygningen, Oslo, 0371, Norway.
Sci Rep. 2018 Feb 2;8(1):2234. doi: 10.1038/s41598-018-20291-7.
Tectonic forces and surface erosion lead to the exhumation of rocks from the Earth's interior. Those rocks can be characterized by many variables including peak pressure and temperature, composition and exhumation duration. Among them, the duration of exhumation in different geological settings can vary by more than ten orders of magnitude (from hours to billion years). Constraining the duration is critical and often challenging in geological studies particularly for rapid magma ascent. Here, we show that the time information can be reconstructed using a simple combination of laser Raman spectroscopic data from mineral inclusions with mechanical solutions for viscous relaxation of the host. The application of our model to several representative geological settings yields best results for short events such as kimberlite magma ascent (less than ~4,500 hours) and a decompression lasting up to ~17 million years for high-pressure metamorphic rocks. This is the first precise time information obtained from direct microstructural observations applying a purely mechanical perspective. We show an unprecedented geological value of tiny mineral inclusions as timekeepers that contributes to a better understanding on the large-scale tectonic history and thus has significant implications for a new generation of geodynamic models.
构造力和地表侵蚀导致岩石从地球内部抬升。这些岩石的特征可以包括许多变量,包括峰值压力和温度、组成和抬升持续时间。其中,不同地质环境中的抬升持续时间可以相差 10 个数量级以上(从几小时到数十亿年)。在地质研究中,特别是对于快速岩浆上升,约束持续时间至关重要,但往往具有挑战性。在这里,我们表明可以使用矿物包裹体的激光拉曼光谱数据与宿主粘性弛豫的力学解的简单组合来重建时间信息。我们的模型在几个代表性地质环境中的应用为较短的事件(如金伯利岩岩浆上升(小于约 4500 小时))和高压变质岩的减压持续时间(长达约 1700 万年)提供了最佳结果。这是从直接微观结构观察中获得的第一个精确时间信息,采用了纯粹的力学观点。我们展示了微小矿物包裹体作为计时仪的前所未有的地质价值,有助于更好地了解大规模构造历史,因此对新一代地球动力学模型具有重要意义。