Suppr超能文献

一种简单的过滤模型,用于指导医疗资源的分配,以改善癌症患者的抑郁治疗。

A simple filter model to guide the allocation of healthcare resources for improving the treatment of depression among cancer patients.

机构信息

Priority Research Centre for Health Behaviour, University of Newcastle, Callaghan, NSW, Australia.

School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.

出版信息

BMC Cancer. 2018 Feb 6;18(1):125. doi: 10.1186/s12885-018-4009-2.

Abstract

BACKGROUND

Depression is highly prevalent yet often poorly detected and treated among cancer patients. In light of the move towards evidence-based healthcare policy, we have developed a simple tool that can assist policy makers, organisations and researchers to logically think through the steps involved in improving patient outcomes, and to help guide decisions about where to allocate resources.

METHODS

The model assumes that a series of filters operate to determine outcomes and cost-effectiveness associated with depression care for cancer patients, including: detection of depression, provider response to detection, patient acceptance of treatment, and effectiveness of treatment provided. To illustrate the utility of the model, hypothetical data for baseline and four scenarios in which filter outcomes were improved by 15% were entered into the model.

RESULTS

The model provides outcomes including: number of people successfully treated, total costs per scenario, and the incremental cost-effectiveness ratio per scenario compared to baseline. The hypothetical data entered into the model illustrate the relative effectiveness (in terms of the number of additional incremental successes) and relative cost-effectiveness (in terms of cost per successful outcome and total cost) of making changes at each step or filter.

CONCLUSIONS

The model provides a readily accessible tool to assist decision makers to think through the steps involved in improving depression outcomes for cancer patents. It provides transparent guidance about how to best allocate resources, and highlights areas where more reliable data are needed. The filter model presents an opportunity to improve on current practice by ensuring that a logical approach, which takes into account the available evidence, is applied to decision making.

摘要

背景

在癌症患者中,抑郁症的发病率很高,但往往难以发现和治疗。鉴于向循证医疗政策转变,我们开发了一种简单的工具,可以帮助决策者、组织和研究人员逻辑地思考改善患者结局所涉及的步骤,并帮助指导关于资源分配的决策。

方法

该模型假设一系列过滤器用于确定与癌症患者抑郁护理相关的结局和成本效益,包括:抑郁的检测、提供者对检测的反应、患者对治疗的接受程度以及提供的治疗的效果。为了说明该模型的实用性,我们将假设数据输入到模型中,这些数据包括基线和四个情景下的结果,其中每个情景下的过滤器结果都提高了 15%。

结果

该模型提供了以下结果:成功治疗的人数、每个情景的总费用,以及与基线相比每个情景的增量成本效益比。模型中输入的假设数据说明了在每个步骤或过滤器中进行更改的相对有效性(以额外增加的成功数量衡量)和相对成本效益(以每个成功结果的成本和总成本衡量)。

结论

该模型提供了一种易于使用的工具,帮助决策者思考改善癌症患者抑郁结局所涉及的步骤。它提供了有关如何最佳分配资源的透明指导,并突出了需要更多可靠数据的领域。过滤器模型提供了一个机会,可以通过确保应用考虑现有证据的逻辑方法来改进当前实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd1c/5800015/9805fa72d9c0/12885_2018_4009_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验