Suppr超能文献

细胞内 G 蛋白偶联受体在突触可塑性中发挥关键作用。

Intracellular GPCRs Play Key Roles in Synaptic Plasticity.

机构信息

Department of Neuroscience , Washington University School of Medicine , Saint Louis , Missouri 63110 , United States.

出版信息

ACS Chem Neurosci. 2018 Sep 19;9(9):2162-2172. doi: 10.1021/acschemneuro.7b00516. Epub 2018 Feb 16.

Abstract

The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.

摘要

人类大脑中的数万亿个突触连接是由经验和神经元活动塑造的,这两者都构成了突触可塑性的基础,最终影响学习和记忆。G 蛋白偶联受体(GPCR)通过增强或减弱突触和/或塑造树突棘在突触可塑性中发挥关键作用。虽然大多数关于突触可塑性的研究都集中在细胞表面受体及其下游信号伙伴上,但新出现的数据表明,这些受体从细胞内部发出信号具有至关重要的新作用。细胞内受体已被定位到细胞核、内质网、溶酶体和线粒体。从这些细胞内位置,这些受体可以与不同的信号系统偶联,表现出独特的脱敏模式,和/或显示出不同的细胞内分布模式。细胞内 GPCR 可以在细胞表面被激活,内吞,并被转运到细胞内位置,或者简单地通过从头合成配体、可渗透配体的扩散或非渗透配体的主动转运在原位被激活。目前的发现强化了这样一种观点,即细胞内 GPCR 在突触可塑性和学习记忆中发挥着动态作用。随着新的细胞内 GPCR 作用被定义,有必要选择性地针对细胞内和细胞表面受体定制激动剂和/或拮抗剂,这可能会导致更有效的治疗工具的发展。

相似文献

1
Intracellular GPCRs Play Key Roles in Synaptic Plasticity.
ACS Chem Neurosci. 2018 Sep 19;9(9):2162-2172. doi: 10.1021/acschemneuro.7b00516. Epub 2018 Feb 16.
2
GPCR signalling from within the cell.
Br J Pharmacol. 2018 Nov;175(21):4026-4035. doi: 10.1111/bph.14023. Epub 2017 Oct 3.
3
Intracellular Ca Release and Synaptic Plasticity: A Tale of Many Stores.
Neuroscientist. 2019 Jun;25(3):208-226. doi: 10.1177/1073858418785334. Epub 2018 Jul 17.
4
Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity.
Neural Plast. 2016;2016:8301737. doi: 10.1155/2016/8301737. Epub 2016 Jan 4.
5
Intracellular calcium stores mediate metaplasticity at hippocampal dendritic spines.
J Physiol. 2019 Jul;597(13):3473-3502. doi: 10.1113/JP277726. Epub 2019 Jun 2.
6
Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways.
Curr Opin Neurobiol. 2010 Feb;20(1):108-15. doi: 10.1016/j.conb.2009.09.013. Epub 2009 Nov 4.
7
Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders.
Psychiatry Clin Neurosci. 2019 Sep;73(9):541-550. doi: 10.1111/pcn.12899. Epub 2019 Jul 8.
10
Coordinated nuclear and synaptic shuttling of afadin promotes spine plasticity and histone modifications.
J Biol Chem. 2014 Apr 11;289(15):10831-10842. doi: 10.1074/jbc.M113.536391. Epub 2014 Feb 24.

引用本文的文献

2
Mitochondrial Localization and Function of Adenosine Receptors.
Int J Biol Sci. 2025 Feb 10;21(5):1874-1893. doi: 10.7150/ijbs.101930. eCollection 2025.
4
Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches.
Curr Issues Mol Biol. 2024 Oct 19;46(10):11646-11664. doi: 10.3390/cimb46100691.
6
A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice.
Nat Commun. 2024 Aug 9;15(1):6842. doi: 10.1038/s41467-024-51008-2.
7
Impact of sex and hypoxia on brain region-specific expression of membrane androgen receptor AR45 in rats.
Front Endocrinol (Lausanne). 2024 Jul 18;15:1420144. doi: 10.3389/fendo.2024.1420144. eCollection 2024.
8
Orphan G protein-coupled receptors: the ongoing search for a home.
Front Pharmacol. 2024 Feb 29;15:1349097. doi: 10.3389/fphar.2024.1349097. eCollection 2024.
9
The psychosis risk factor encodes a novel repressor of GPCR/cAMP signal transduction.
bioRxiv. 2023 Jan 13:2023.01.12.523776. doi: 10.1101/2023.01.12.523776.
10
Mitochondrial signal transduction.
Cell Metab. 2022 Nov 1;34(11):1620-1653. doi: 10.1016/j.cmet.2022.10.008.

本文引用的文献

1
Identification of Two New Cholesterol Interaction Sites on the A Adenosine Receptor.
Biophys J. 2017 Dec 5;113(11):2415-2424. doi: 10.1016/j.bpj.2017.09.027.
2
Linking Mitochondria and Synaptic Transmission: The CB1 Receptor.
Bioessays. 2017 Dec;39(12). doi: 10.1002/bies.201700126. Epub 2017 Oct 23.
3
Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7997-E8006. doi: 10.1073/pnas.1705768114. Epub 2017 Sep 5.
4
GPCR signalling from within the cell.
Br J Pharmacol. 2018 Nov;175(21):4026-4035. doi: 10.1111/bph.14023. Epub 2017 Oct 3.
5
CB Receptor Signaling in the Brain: Extracting Specificity from Ubiquity.
Neuropsychopharmacology. 2018 Jan;43(1):4-20. doi: 10.1038/npp.2017.206. Epub 2017 Sep 1.
7
Estrogenic regulation of memory consolidation: A look beyond the hippocampus, ovaries, and females.
Physiol Behav. 2018 Apr 1;187:57-66. doi: 10.1016/j.physbeh.2017.07.028. Epub 2017 Jul 27.
9
New roles for neuronal estrogen receptors.
Neurogastroenterol Motil. 2017 Jul;29(7). doi: 10.1111/nmo.13121.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验