Suppr超能文献

沙门氏菌血清型海德堡感染中头孢曲松耐药比例的贝叶斯分层模型。

Bayesian hierarchical model of ceftriaxone resistance proportions among Salmonella serotype Heidelberg infections.

作者信息

Gu Weidong, Medalla Felicita, Hoekstra Robert M

机构信息

Division of Foodborne, Waterborne and Environmental Diseases, National Center of Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, GA 30329, United States.

Division of Foodborne, Waterborne and Environmental Diseases, National Center of Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, GA 30329, United States.

出版信息

Spat Spatiotemporal Epidemiol. 2018 Feb;24:19-26. doi: 10.1016/j.sste.2017.10.003. Epub 2017 Nov 2.

Abstract

The National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention tracks resistance among Salmonella infections. The annual number of Salmonella isolates of a particular serotype from states may be small, making direct estimation of resistance proportions unreliable. We developed a Bayesian hierarchical model to improve estimation by borrowing strength from relevant sampling units. We illustrate the models with different specifications of spatio-temporal interaction using 2004-2013 NARMS data for ceftriaxone-resistant Salmonella serotype Heidelberg. Our results show that Bayesian estimates of resistance proportions were smoother than observed values, and the difference between predicted and observed proportions was inversely related to the number of submitted isolates. The model with interaction allowed for tracking of annual changes in resistance proportions at the state level. We demonstrated that Bayesian hierarchical models provide a useful tool to examine spatio-temporal patterns of small sample size such as those found in NARMS.

摘要

美国疾病控制与预防中心的国家抗微生物药物耐药性监测系统(NARMS)追踪沙门氏菌感染中的耐药情况。来自各州的特定血清型沙门氏菌分离株的年度数量可能较少,这使得直接估计耐药比例并不可靠。我们开发了一种贝叶斯分层模型,通过从相关抽样单位借用信息来改进估计。我们使用2004 - 2013年NARMS数据中对头孢曲松耐药的沙门氏菌血清型海德堡,用不同时空交互规范说明了这些模型。我们的结果表明,耐药比例的贝叶斯估计值比观测值更平滑,预测比例与观测比例之间的差异与提交的分离株数量呈负相关。具有交互作用的模型能够追踪各州耐药比例的年度变化。我们证明,贝叶斯分层模型为研究小样本量的时空模式(如在NARMS中发现的那些模式)提供了一个有用的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验