Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China.
Department of Chemistry, Duke University , Durham, North Carolina 27708, United States.
ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6084-6089. doi: 10.1021/acsami.7b19009. Epub 2018 Feb 12.
An efficient self-standing hydrogen evolution electrode was prepared by in situ growth of stacked ultrathin TiO/MoS heterolayers on carbon paper (CP@TiO@MoS). Owing to the high overall conductivity, large electrochemical surface area and abundant active sites, this novel electrode exhibits an excellent performance for hydrogen evolution reaction (HER). Remarkably, the composite electrode shows a low Tafel slope of 41.7 mV/dec, and an ultrahigh cathodic current density of 550 mA/cm at a very low overpotential of 0.25 V. This work presents a new universal strategy for the construction of effective, durable, scalable, and inexpensive electrodes that can be extended to other electrocatalytic systems.
通过在碳纸上原位生长堆叠的超薄 TiO/MoS 异质层,制备了高效自立式析氢电极(CP@TiO@MoS)。由于具有高整体导电性、大电化学表面积和丰富的活性位点,这种新型电极在析氢反应(HER)中表现出优异的性能。值得注意的是,该复合电极具有 41.7 mV/dec 的低塔菲尔斜率和在超低过电势 0.25 V 时高达 550 mA/cm 的超阴极电流密度。这项工作为构建有效、耐用、可扩展且廉价的电极提供了一种新的通用策略,这种策略可以扩展到其他电催化体系。