Hannestad Jonas K, Höök Fredrik, Sjövall Peter
RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden and Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
Biointerphases. 2018 Feb 8;13(3):03B408. doi: 10.1116/1.5019794.
The organization of lipid membranes plays an important role in a wide range of biological processes at different length scales. Herein, the authors present a procedure based on time-of-flight secondary ion mass spectrometry (ToF-SIMS) to characterize the nanometer-scale ordering of lipids in lipid membrane structures on surfaces. While ToF-SIMS is a powerful tool for label-free analysis of lipid-containing samples, its limited spatial resolution prevents in-depth knowledge of how lipid properties affect the molecular assembly of the membrane. The authors overcome this limitation by measuring the formation of lipid dimers, originating in the same nanometer-sized primary ion impact areas. The lipid dimers reflect the local lipid environment and thus allow us to characterize the membrane miscibility on the nanometer level. Using this technique, the authors show that the chemical properties of the constituting lipids are critical for the structure and organization of the membrane on both the nanometer and micrometer length scales. Our results show that even at lipid surface compositions favoring two-phase systems, lipids are still extracted from solid, gel phase, domains into the surrounding fluid supported lipid bilayer surrounding the gel phase domains. The technique offers a means to obtain detailed knowledge of the chemical composition and organization of lipid membranes with potential application in systems where labeling is not possible, such as cell-derived supported lipid bilayers.
脂质膜的组织在不同长度尺度的广泛生物过程中起着重要作用。在此,作者提出了一种基于飞行时间二次离子质谱(ToF-SIMS)的方法,用于表征表面脂质膜结构中脂质的纳米级有序排列。虽然ToF-SIMS是用于含脂质样品无标记分析的强大工具,但其有限的空间分辨率阻碍了深入了解脂质特性如何影响膜的分子组装。作者通过测量源自相同纳米尺寸初级离子撞击区域的脂质二聚体的形成来克服这一限制。脂质二聚体反映了局部脂质环境,从而使我们能够在纳米水平上表征膜的混溶性。使用该技术,作者表明构成脂质的化学性质对于纳米和微米长度尺度上膜的结构和组织至关重要。我们的结果表明,即使在有利于两相系统的脂质表面组成情况下,脂质仍会从固态、凝胶相、区域中提取到围绕凝胶相区域的周围流体支撑脂质双层中。该技术提供了一种获得脂质膜化学成分和组织详细知识的方法,在无法进行标记的系统中具有潜在应用,例如细胞衍生的支撑脂质双层。