Stucky Frédéric, Vesin Jean-Marc, Kayser Bengt, Uva Barbara
Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
Applied Signal Processing Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Front Physiol. 2018 Jan 30;9:34. doi: 10.3389/fphys.2018.00034. eCollection 2018.
Anti-gravity treadmills facilitate locomotion by lower-body positive pressure (LBPP). Effects on cardiorespiratory regulation are unknown. Healthy men (30 ± 8 y, 178.3 ± 5.7 cm, 70.3 ± 8.0 kg; mean ± SD) stood upright ( = 10) or ran ( = 9) at 9, 11, 13, and 15 km.h (5 min stages) with LBPP (0, 15, 40 mmHg). Cardiac output (CO), stroke volume (SV), heart rate (HR), blood pressure (BP), peripheral resistance (PR), and oxygen uptake (VO) were monitored continuously. During standing, LBPP increased SV [by +29 ± 13 (+41%) and +42 ± 15 (+60%) ml, at 15 and 40 mmHg, respectively ( < 0.05)] and decreased HR [by -15 ± 6 (-20%) and -22 ± 9 (-29%) bpm ( < 0.05)] resulting in a transitory increase in CO [by +1.6 ± 1.0 (+32%) and +2.0 ± 1.0 (+39%) l.min ( < 0.05)] within the first seconds of LBPP. This was accompanied by a transitory decrease in end-tidal PO [by -5 ± 3 (-5%) and -10 ± 4 (-10%) mmHg ( < 0.05)] and increase in VO [by +66 ± 53 (+26%) and +116 ± 64 (+46%) ml.min ( < 0.05)], suggesting increased venous return and pulmonary blood flow. The application of LBPP increased baroreflex sensitivity (BRS) [by +1.8 ± 1.6 (+18%) and +4.6 ± 3.7 (+47%) at 15 and 40 mmHg LBPP, respectively < 0.05]. After reaching steady-state exercise CO vs. VO relationships remained linear with similar slope and intercept for each participant (mean = 0.84 ± 0.13) while MAP remained unchanged. It follows that (1) LBPP affects cardiorespiratory integration at the onset of exercise; (2) at a given LBPP, once reaching steady-state exercise, the cardiorespiratory load is reduced proportionally to the lower metabolic demand resulting from the body weight support; (3) the balance between cardiovascular response, oxygen delivery to the exercising muscles and blood pressure regulation is maintained at exercise steady-state; and (4) changes in baroreflex sensitivity may be involved in the regulation of cardiovascular parameters during LBPP.
反重力跑步机通过下体正压(LBPP)促进运动。其对心肺调节的影响尚不清楚。健康男性(30±8岁,身高178.3±5.7厘米,体重70.3±8.0千克;均值±标准差)在有LBPP(0、15、40毫米汞柱)的情况下,以9、11、13和15千米/小时的速度直立(n = 10)或跑步(n = 9)(每个阶段5分钟)。连续监测心输出量(CO)、每搏输出量(SV)、心率(HR)、血压(BP)、外周阻力(PR)和摄氧量(VO)。站立期间,LBPP使SV增加[在15和40毫米汞柱时分别增加29±13(+41%)和42±15(+60%)毫升,P < 0.05],并使HR降低[分别降低15±6(-20%)和22±9(-29%)次/分钟,P < 0.05],导致在LBPP开始的最初几秒内CO短暂增加[分别增加1.6±1.0(+32%)和2.0±1.0(+39%)升/分钟,P < 0.05]。这伴随着呼气末PO2短暂降低[分别降低5±3(-5%)和10±4(-10%)毫米汞柱,P < 0.05]以及VO2增加[分别增加66±53(+26%)和116±64(+46%)毫升/分钟,P < 0.05],表明静脉回流和肺血流量增加。应用LBPP增加了压力反射敏感性(BRS)[在15和40毫米汞柱LBPP时分别增加1.8±1.6(+18%)和4.6±3.7(+47%),P < 0.05]。达到稳定状态运动后,每个参与者的CO与VO2关系保持线性,斜率和截距相似(均值r = 0.84±0.13),而平均动脉压(MAP)保持不变。由此得出:(1)LBPP在运动开始时影响心肺整合;(2)在给定的LBPP下,一旦达到稳定状态运动,心肺负荷会因体重支撑导致的较低代谢需求而成比例降低;(3)在运动稳定状态下,心血管反应、向运动肌肉的氧气输送和血压调节之间的平衡得以维持;(4)压力反射敏感性的变化可能参与LBPP期间心血管参数的调节。