Suppr超能文献

基于生理的药代动力学模型在利伐沙班药物-药物和药物-疾病相互作用预测中的应用。

Application of physiologically based pharmacokinetic modeling to the prediction of drug-drug and drug-disease interactions for rivaroxaban.

作者信息

Xu Ruijuan, Ge Weihong, Jiang Qing

机构信息

Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, China.

Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, China.

出版信息

Eur J Clin Pharmacol. 2018 Jun;74(6):755-765. doi: 10.1007/s00228-018-2430-8. Epub 2018 Feb 17.

Abstract

PURPOSE

Rivaroxaban is a direct oral anticoagulant with a large inter-individual variability. The present study is to develop a physiologically based pharmacokinetic (PBPK) model to predict several scenarios in clinical practice.

METHODS

A whole-body PBPK model for rivaroxaban, which is metabolized by the cytochrome P450 (CYP) 3A4/5, 2J2 pathways and excreted via kidneys, was developed to predict the pharmacokinetics at different doses in healthy subjects and patients with hepatic or renal dysfunction. Hepatic clearance and drug-drug interactions (DDI) were estimated by in vitro in vivo extrapolation (IVIVE) based on parameters obtained from in vitro experiments. To validate the model, observed concentrations were compared with predicted concentrations, and the impact of special scenarios was investigated.

RESULTS

The PBPK model successfully predicted the pharmacokinetics for healthy subjects and patients as well as DDIs. Sensitivity analysis shows that age, renal, and hepatic clearance are important factors affecting rivaroxaban pharmacokinetics. The predicted fold increase of rivaroxaban AUC values when combined administered with the inhibitors such as ketoconazole, ritonavir, and clarithromycin were 2.3, 2.2, and 1.3, respectively. When DDIs and hepatic dysfunction coexist, the fold increase of rivaroxaban exposure would increase significantly compared with one factor alone.

CONCLUSIONS

Our study using PBPK modeling provided a reasonable approach to evaluate exposure levels in special patients under special scenarios. Although further clinical study or real-life experience would certainly merit the current work, the modeling work so far would at least suggest caution of using rivaroxaban in complicated clinical settings.

摘要

目的

利伐沙班是一种直接口服抗凝剂,个体间差异较大。本研究旨在建立一个基于生理的药代动力学(PBPK)模型,以预测临床实践中的几种情况。

方法

建立了一个利伐沙班的全身PBPK模型,该模型通过细胞色素P450(CYP)3A4/5、2J2途径代谢并经肾脏排泄,用于预测健康受试者以及肝或肾功能不全患者不同剂量下的药代动力学。基于体外实验获得的参数,通过体外体内外推法(IVIVE)估算肝清除率和药物-药物相互作用(DDI)。为验证该模型,将观察到的浓度与预测浓度进行比较,并研究特殊情况的影响。

结果

PBPK模型成功预测了健康受试者、患者以及药物-药物相互作用的药代动力学。敏感性分析表明,年龄、肾脏和肝脏清除率是影响利伐沙班药代动力学的重要因素。与酮康唑、利托那韦和克拉霉素等抑制剂联合给药时,利伐沙班AUC值的预测增加倍数分别为2.3、2.2和1.3。当药物-药物相互作用和肝功能不全同时存在时,与单一因素相比,利伐沙班暴露的增加倍数将显著增加。

结论

我们使用PBPK建模的研究提供了一种合理的方法来评估特殊情况下特殊患者的暴露水平。虽然进一步的临床研究或实际经验肯定会证明当前的工作是有价值的,但迄今为止的建模工作至少表明在复杂的临床环境中使用利伐沙班时应谨慎。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验