Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter Str. 11, 12489, Berlin, Germany.
School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany.
Anal Bioanal Chem. 2018 Apr;410(10):2607-2617. doi: 10.1007/s00216-018-0933-x. Epub 2018 Feb 17.
Biotransformation processes of fluopyram (FLP), a new succinate dehydrogenase inhibitor (SDHI) fungicide, were investigated by electrochemistry (EC) coupled online to liquid chromatography (LC) and electrospray mass spectrometry (ESI-MS). Oxidative phase I metabolite production was achieved using an electrochemical flow-through cell equipped with a boron-doped diamond (BDD) electrode. Structural elucidation and prediction of oxidative metabolism pathways were assured by retention time, isotopic patterns, fragmentation, and accurate mass measurements using EC/LC/MS, LC-MS/MS, and/or high-resolution mass spectrometry (HRMS). The results obtained by EC were compared with conventional in vitro studies by incubating FLP with rat and human liver microsomes (RLM, HLM). Known phase I metabolites of FLP (benzamide, benzoic acid, 7-hydroxyl, 8-hydroxyl, 7,8-dihydroxyl FLP, lactam FLP, pyridyl acetic acid, and Z/E-olefin FLP) were successfully simulated by EC/LC/MS. New metabolites including an imide, hydroxyl lactam, and 7-hydroxyl pyridyl acetic acid oxidative metabolites were predicted for the first time in our study using EC/LC/MS and liver microsomes. We found oxidation by dechlorination to be one of the major metabolism mechanisms of FLP. Thus, our results revealed that EC/LC/MS-based metabolic elucidation was more advantageous on time and cost of analysis and enabled matrix-free detection with valuable information about the mechanisms and intermediates of metabolism processes. Graphical abstract Oxidative metabolism of fluopyram.
氟吡菌酰胺(FLP)是一种新型琥珀酸脱氢酶抑制剂(SDHI)杀菌剂,本文采用电化学(EC)与液相色谱(LC)和电喷雾质谱(ESI-MS)在线联用的方法研究了其生物转化过程。使用配备有掺硼金刚石(BDD)电极的电化学流通池实现了氧化相 I 代谢物的生成。通过保留时间、同位素模式、碎裂和使用 EC/LC/MS、LC-MS/MS 和/或高分辨率质谱(HRMS)进行的精确质量测量,确保了结构阐明和氧化代谢途径的预测。通过将 FLP 与大鼠和人肝微粒体(RLM、HLM)孵育进行的传统体外研究的结果与 EC 进行了比较。成功通过 EC/LC/MS 模拟了 FLP 的已知相 I 代谢物(苯甲酰胺、苯甲酸、7-羟基、8-羟基、7,8-二羟基 FLP、内酰胺 FLP、吡啶基乙酸和 Z/E-烯烃 FLP)。首次使用 EC/LC/MS 和肝微粒体在我们的研究中预测了新的代谢物,包括酰亚胺、羟基内酰胺和 7-羟基吡啶基乙酸氧化代谢物。我们发现脱氯氧化是 FLP 的主要代谢机制之一。因此,我们的研究结果表明,基于 EC/LC/MS 的代谢阐明在分析时间和成本方面具有优势,并且能够进行无基质检测,提供有关代谢过程机制和中间体的有价值信息。