Suppr超能文献

对马克恩和谢弗的评论:运动的幂定律:一种行为错觉的例子。

Comments on Marken and Shaffer: The power law of movement: an example of a behavioral illusion.

作者信息

Taylor M M

机构信息

Martin Taylor Consulting, 369 Castlefield Avenue, Toronto, Ontario, M5N 1L4, Canada.

出版信息

Exp Brain Res. 2018 May;236(5):1531-1535. doi: 10.1007/s00221-018-5192-8. Epub 2018 Feb 21.

Abstract

Many researchers who have studied movements along curved paths, under a variety of conditions, by different organisms, mostly human but a couple with non-human organisms, have found a consistent form of relation between the tangential (along-track) instantaneous velocity V and the local radius of curvature R. The consistent relation is that V ≈ cR , where k is a constant less than unity, often near 0.33 but sometimes far from 0.33, and c is a proportionality constant appropriate to the organism and the situation (see Zago, Matic, Flash, et al. (2017) for many examples in which the power law holds with widely varying values of the power, as well as cases of simple systems for which everything can be calculated exactly and in which the power law fails badly). Marken and Shaffer (Exp Brain Res 235:1835-1842; 2017), following a challenge by Gomez-Marin to see whether it is possible to use Perceptual Control Theory (Powers 1973/2005) to explain the power law results (Alex Gomez-Marin posting to CSGnet@lists.illinois.edu 2016.05.03), claim to have found a mathematical argument that proves the true exponent of the power relating velocity and radius of curvature always to be 1/3. They say that deviations from this value occur because researchers have omitted a critical correction "cross-product" factor that the authors label "D". This note questions the logic of the analysis offered by Marken and Shaffer, and argues that even had the analysis been correct, it would not affect future research into the reasons why and when the power law is observed and the circumstances that determine the value of the power found when it is observed.

摘要

许多研究人员在各种条件下,对不同生物体(主要是人类,但也有一些非人类生物体)沿弯曲路径的运动进行了研究,他们发现切向(沿轨迹)瞬时速度V与局部曲率半径R之间存在一种一致的关系形式。这种一致的关系是V ≈ cR ,其中k是一个小于1的常数,通常接近0.33,但有时与0.33相差甚远,c是一个与生物体和情况相适应的比例常数(见Zago、Matic、Flash等人(2017年)的许多例子,其中幂律在幂值广泛变化的情况下成立,以及一些简单系统的情况,在这些系统中一切都可以精确计算,且幂律严重不成立)。Marken和Shaffer(《实验脑研究》235:1835 - 1842;2017年),在Gomez - Marin提出的挑战之后,即是否有可能使用感知控制理论(Powers 1973/2005)来解释幂律结果(Alex Gomez - Marin于2016年5月3日发布到CSGnet@lists.illinois.edu),声称已经找到了一个数学论证,证明速度与曲率半径之间幂律的真正指数始终为1/3。他们说,与这个值的偏差出现是因为研究人员忽略了一个关键的校正“叉积”因子,作者将其标记为“D”。本注释质疑Marken和Shaffer提供的分析逻辑,并认为即使该分析是正确的,它也不会影响未来对幂律被观察到的原因和时间以及观察到幂律时决定幂值的情况的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验