Zheng Ren-Hui, Wei Wen-Mei, Xu Meng, Shi Qiang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P. R. China.
Phys Chem Chem Phys. 2018 Mar 7;20(10):7053-7058. doi: 10.1039/c7cp08473k.
Using quantum computations we study sum-frequency vibrational spectroscopy of limonene chiral liquids due to the nonadiabatic effect in the non-resonant case for the first time. The nonadiabatic effect has an important impact on non-resonant antisymmetric polarizability and chiral sum-frequency vibrational spectroscopy. The theoretical spectroscopy agrees with the experimental spectroscopy. However, the nonadiabatic effect only has a small influence on non-resonant Raman. Bulk sum-frequency vibrational spectroscopy may become a powerful method of investigating the nonadiabatic effect and the nonradiative transition between excited electronic states for chiral molecules.