Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences , Uppsala University , Box 591 BMC, 75124 Uppsala , Sweden.
Anal Chem. 2018 Mar 20;90(6):3676-3682. doi: 10.1021/acs.analchem.7b03188. Epub 2018 Mar 8.
Advances in mass spectrometry imaging that improve both spatial and mass resolution are resulting in increasingly larger data files that are difficult to handle with current software. We have developed a novel near-lossless compression method with data entropy reduction that reduces the file size significantly. The reduction in data size can be set at four different levels (coarse, medium, fine, and superfine) prior to running the data compression. This can be applied to spectra or spectrum-by-spectrum, or it can be applied to transpose arrays or array-by-array, to efficiently read the data without decompressing the whole data set. The results show that a compression ratio of up to 5.9:1 was achieved for data from commercial mass spectrometry software programs and 55:1 for data from our in-house developed msIQuant program. Comparing the average signals from regions of interest, the maximum deviation was 0.2% between compressed and uncompressed data sets with coarse accuracy for the data entropy reduction. In addition, when accessing the compressed data by selecting a random m/ z value using msIQuant, the time to update an image on the computer screen was only slightly increased from 92 (±32) ms (uncompressed) to 114 (±13) ms (compressed). Furthermore, the compressed data can be stored on readily accessible servers for data evaluation without further data reprocessing. We have developed a space efficient, direct access data compression algorithm for mass spectrometry imaging, which can be used for various data-demanding mass spectrometry imaging applications.
质谱成像技术的进步提高了空间和质量分辨率,导致数据文件越来越大,当前的软件难以处理。我们开发了一种新颖的近无损压缩方法,通过数据熵减少来显著减小文件大小。在运行数据压缩之前,可以将数据大小减少设置为四个不同级别(粗糙、中等、精细和超精细)。可以对谱或谱对进行压缩,也可以对转置数组或数组对进行压缩,以便在不解压整个数据集的情况下高效读取数据。结果表明,商业质谱软件程序的数据压缩比高达 5.9:1,而我们内部开发的 msIQuant 程序的数据压缩比高达 55:1。对于数据熵减少的粗精度,比较感兴趣区域的平均信号,压缩和未压缩数据集之间的最大偏差为 0.2%。此外,当使用 msIQuant 通过选择随机 m/z 值访问压缩数据时,更新计算机屏幕上图像的时间仅从 92(±32)ms(未压缩)略微增加到 114(±13)ms(压缩)。此外,压缩后的数据可以存储在易于访问的服务器上,以便在不进行进一步数据处理的情况下进行数据评估。我们开发了一种用于质谱成像的高效空间、直接访问数据压缩算法,可用于各种需要大量数据的质谱成像应用。